Introduction to Quantum Graphs
Title | Introduction to Quantum Graphs PDF eBook |
Author | Gregory Berkolaiko |
Publisher | American Mathematical Soc. |
Pages | 291 |
Release | 2013 |
Genre | Mathematics |
ISBN | 0821892118 |
A ``quantum graph'' is a graph considered as a one-dimensional complex and equipped with a differential operator (``Hamiltonian''). Quantum graphs arise naturally as simplified models in mathematics, physics, chemistry, and engineering when one considers propagation of waves of various nature through a quasi-one-dimensional (e.g., ``meso-'' or ``nano-scale'') system that looks like a thin neighborhood of a graph. Works that currently would be classified as discussing quantum graphs have been appearing since at least the 1930s, and since then, quantum graphs techniques have been applied successfully in various areas of mathematical physics, mathematics in general and its applications. One can mention, for instance, dynamical systems theory, control theory, quantum chaos, Anderson localization, microelectronics, photonic crystals, physical chemistry, nano-sciences, superconductivity theory, etc. Quantum graphs present many non-trivial mathematical challenges, which makes them dear to a mathematician's heart. Work on quantum graphs has brought together tools and intuition coming from graph theory, combinatorics, mathematical physics, PDEs, and spectral theory. This book provides a comprehensive introduction to the topic, collecting the main notions and techniques. It also contains a survey of the current state of the quantum graph research and applications.
Quantum Probability and Spectral Analysis of Graphs
Title | Quantum Probability and Spectral Analysis of Graphs PDF eBook |
Author | Akihito Hora |
Publisher | Springer Science & Business Media |
Pages | 384 |
Release | 2007-07-05 |
Genre | Science |
ISBN | 3540488634 |
This is the first book to comprehensively cover quantum probabilistic approaches to spectral analysis of graphs, an approach developed by the authors. The book functions as a concise introduction to quantum probability from an algebraic aspect. Here readers will learn several powerful methods and techniques of wide applicability, recently developed under the name of quantum probability. The exercises at the end of each chapter help to deepen understanding.
Introduction to Quantum Mechanics with Applications to Chemistry
Title | Introduction to Quantum Mechanics with Applications to Chemistry PDF eBook |
Author | Linus Pauling |
Publisher | Courier Corporation |
Pages | 500 |
Release | 2012-06-08 |
Genre | Science |
ISBN | 0486134938 |
Classic undergraduate text explores wave functions for the hydrogen atom, perturbation theory, the Pauli exclusion principle, and the structure of simple and complex molecules. Numerous tables and figures.
Introduction to Quantum Groups and Crystal Bases
Title | Introduction to Quantum Groups and Crystal Bases PDF eBook |
Author | Jin Hong |
Publisher | American Mathematical Soc. |
Pages | 327 |
Release | 2002 |
Genre | Mathematics |
ISBN | 0821828746 |
The purpose of this book is to provide an elementary introduction to the theory of quantum groups and crystal bases, focusing on the combinatorial aspects of the theory.
Geometric and Computational Spectral Theory
Title | Geometric and Computational Spectral Theory PDF eBook |
Author | Alexandre Girouard |
Publisher | American Mathematical Soc. |
Pages | 298 |
Release | 2017-10-30 |
Genre | Mathematics |
ISBN | 147042665X |
A co-publication of the AMS and Centre de Recherches Mathématiques The book is a collection of lecture notes and survey papers based on the mini-courses given by leading experts at the 2015 Séminaire de Mathématiques Supérieures on Geometric and Computational Spectral Theory, held from June 15–26, 2015, at the Centre de Recherches Mathématiques, Université de Montréal, Montréal, Quebec, Canada. The volume covers a broad variety of topics in spectral theory, highlighting its connections to differential geometry, mathematical physics and numerical analysis, bringing together the theoretical and computational approaches to spectral theory, and emphasizing the interplay between the two.
Spectral Analysis on Graph-like Spaces
Title | Spectral Analysis on Graph-like Spaces PDF eBook |
Author | Olaf Post |
Publisher | Springer Science & Business Media |
Pages | 444 |
Release | 2012-01-06 |
Genre | Mathematics |
ISBN | 3642238394 |
Small-radius tubular structures have attracted considerable attention in the last few years, and are frequently used in different areas such as Mathematical Physics, Spectral Geometry and Global Analysis. In this monograph, we analyse Laplace-like operators on thin tubular structures ("graph-like spaces''), and their natural limits on metric graphs. In particular, we explore norm resolvent convergence, convergence of the spectra and resonances. Since the underlying spaces in the thin radius limit change, and become singular in the limit, we develop new tools such as norm convergence of operators acting in different Hilbert spaces, an extension of the concept of boundary triples to partial differential operators, and an abstract definition of resonances via boundary triples. These tools are formulated in an abstract framework, independent of the original problem of graph-like spaces, so that they can be applied in many other situations where the spaces are perturbed.
Graph Representation Learning
Title | Graph Representation Learning PDF eBook |
Author | William L. William L. Hamilton |
Publisher | Springer Nature |
Pages | 141 |
Release | 2022-06-01 |
Genre | Computers |
ISBN | 3031015886 |
Graph-structured data is ubiquitous throughout the natural and social sciences, from telecommunication networks to quantum chemistry. Building relational inductive biases into deep learning architectures is crucial for creating systems that can learn, reason, and generalize from this kind of data. Recent years have seen a surge in research on graph representation learning, including techniques for deep graph embeddings, generalizations of convolutional neural networks to graph-structured data, and neural message-passing approaches inspired by belief propagation. These advances in graph representation learning have led to new state-of-the-art results in numerous domains, including chemical synthesis, 3D vision, recommender systems, question answering, and social network analysis. This book provides a synthesis and overview of graph representation learning. It begins with a discussion of the goals of graph representation learning as well as key methodological foundations in graph theory and network analysis. Following this, the book introduces and reviews methods for learning node embeddings, including random-walk-based methods and applications to knowledge graphs. It then provides a technical synthesis and introduction to the highly successful graph neural network (GNN) formalism, which has become a dominant and fast-growing paradigm for deep learning with graph data. The book concludes with a synthesis of recent advancements in deep generative models for graphs—a nascent but quickly growing subset of graph representation learning.