Introduction to Hamiltonian Fluid Dynamics and Stability Theory

Introduction to Hamiltonian Fluid Dynamics and Stability Theory
Title Introduction to Hamiltonian Fluid Dynamics and Stability Theory PDF eBook
Author Gordon E Swaters
Publisher Routledge
Pages 288
Release 2019-01-22
Genre Mathematics
ISBN 135143697X

Download Introduction to Hamiltonian Fluid Dynamics and Stability Theory Book in PDF, Epub and Kindle

Hamiltonian fluid dynamics and stability theory work hand-in-hand in a variety of engineering, physics, and physical science fields. Until now, however, no single reference addressed and provided background in both of these closely linked subjects. Introduction to Hamiltonian Fluid Dynamics and Stability Theory does just that-offers a comprehensive introduction to Hamiltonian fluid dynamics and describes aspects of hydrodynamic stability theory within the context of the Hamiltonian formalism. The author uses the example of the nonlinear pendulum-giving a thorough linear and nonlinear stability analysis of its equilibrium solutions-to introduce many of the ideas associated with the mathematical argument required in infinite dimensional Hamiltonian theory needed for fluid mechanics. He examines Andrews' Theorem, derives and develops the Charney-Hasegawa-Mima (CMH) equation, presents an account of the Hamiltonian structure of the Korteweg-de Vries (KdV) equation, and discusses the stability theory associated with the KdV soliton. The book's tutorial approach and plentiful exercises combine with its thorough presentations of both subjects to make Introduction to Hamiltonian Fluid Dynamics and Stability Theory an ideal reference, self-study text, and upper level course book.

Fluid Dynamics

Fluid Dynamics
Title Fluid Dynamics PDF eBook
Author Anatoly I. Ruban
Publisher OUP Oxford
Pages 336
Release 2014-05-08
Genre Science
ISBN 0191503967

Download Fluid Dynamics Book in PDF, Epub and Kindle

This is the first book in a four-part series designed to give a comprehensive and coherent description of Fluid Dynamics, starting with chapters on classical theory suitable for an introductory undergraduate lecture course, and then progressing through more advanced material up to the level of modern research in the field. The present Part 1 consists of four chapters. Chapter 1 begins with a discussion of Continuum Hypothesis, which is followed by an introduction to macroscopic functions, the velocity vector, pressure, density, and enthalpy. We then analyse the forces acting inside a fluid, and deduce the Navier-Stokes equations for incompressible and compressible fluids in Cartesian and curvilinear coordinates. In Chapter 2 we study the properties of a number of flows that are presented by the so-called exact solutions of the Navier-Stokes equations, including the Couette flow between two parallel plates, Hagen-Poiseuille flow through a pipe, and Karman flow above an infinite rotating disk. Chapter 3 is devoted to the inviscid incompressible flow theory, with particular focus on two-dimensional potential flows. These can be described in terms of the "complex potential", allowing the full power of the theory of functions of complex variables to be used. We discuss in detail the method of conformal mapping, which is then used to study various flows of interest, including the flows past Joukovskii aerofoils. The final Chapter 4 is concerned with compressible flows of perfect gas, including supersonic flows. Particular attention is given to the theory of characteristics, which is used, for example, to analyse the Prandtl-Meyer flow over a body surface bend and a corner. Significant attention is also devoted to the shock waves. The chapter concludes with analysis of unsteady flows, including the theory of blast waves.

Introduction to Hydrodynamic Stability

Introduction to Hydrodynamic Stability
Title Introduction to Hydrodynamic Stability PDF eBook
Author P. G. Drazin
Publisher Cambridge University Press
Pages 284
Release 2002-09-09
Genre Science
ISBN 9780521009652

Download Introduction to Hydrodynamic Stability Book in PDF, Epub and Kindle

Publisher Description

Hydrodynamic stability theory

Hydrodynamic stability theory
Title Hydrodynamic stability theory PDF eBook
Author A. Georgescu
Publisher Springer Science & Business Media
Pages 306
Release 2013-04-17
Genre Mathematics
ISBN 9401718148

Download Hydrodynamic stability theory Book in PDF, Epub and Kindle

The great number of varied approaches to hydrodynamic stability theory appear as a bulk of results whose classification and discussion are well-known in the literature. Several books deal with one aspect of this theory alone (e.g. the linear case, the influence of temperature and magnetic field, large classes of globally stable fluid motions etc.). The aim of this book is to provide a complete mathe matical treatment of hydrodynamic stability theory by combining the early results of engineers and applied mathematicians with the recent achievements of pure mathematicians. In order to ensure a more operational frame to this theory I have briefly outlined the main results concerning the stability of the simplest types of flow. I have attempted several definitions of the stability of fluid flows with due consideration of the connections between them. On the other hand, as the large number of initial and boundary value problems in hydrodynamic stability theory requires appropriate treat ments, most of this book is devoted to the main concepts and methods used in hydrodynamic stability theory. Open problems are expressed in both mathematical and physical terms.

Fluid Dynamics

Fluid Dynamics
Title Fluid Dynamics PDF eBook
Author Anatoly Ruban
Publisher Oxford University Press
Pages 369
Release 2023-07-03
Genre Science
ISBN 0198885822

Download Fluid Dynamics Book in PDF, Epub and Kindle

This is the fourth volume in a four-part series on fluid dynamics: Part 1. Classical Fluid Dynamics Part 2. Asymptotic Problems of Fluid Dynamics Part 3. Boundary Layers Part 4. Hydrodynamic Stability Theory The series is designed to give a comprehensive and coherent description of fluid dynamics, starting with chapters on classical theory suitable for an introductory undergraduate lecture course, and then progressing through more advanced material up to the level of modern research in the field. Part 4 is devoted to hydrodynamic stability theory which aims at predicting the conditions under which the laminar state of a flow turns into a turbulent state. The phenomenon of laminar-turbulent transition remains one of the main challenges of modern physics. The resolution of this problem is important not only from a theoretical viewpoint but also for practical applications. For instance, in the flow past a passenger aircraft wing, the laminar-turbulent transition causes a fivefold increase in the viscous drag. The book starts with the classical results of the theory which include the global stability analysis followed by the derivation of the Orr-Sommerfeld equation. The properties of this equation are discussed using, as examples, plane Poiseuille flow and the Blasius boundary layer. In addition, we discuss 'inviscid flow' instability governed by the Rayleigh equation, Kelvin-Helmholtz instability, crossflow instability, and centrifugal instability, taking the form of Taylor-Görtler vortices. However, in this presentation our main attention regards recent developments in the theory. These include linear and nonlinear critical layer theory, the theory of receptivity of the boundary layer to external perturbations, weakly nonlinear stability theory of Landau and Stuart, and vortex-wave interaction theory. The latter allows us to describe self-sustaining nonlinear perturbations within a viscous fluid.

An Introduction to Theoretical Fluid Mechanics

An Introduction to Theoretical Fluid Mechanics
Title An Introduction to Theoretical Fluid Mechanics PDF eBook
Author Stephen Childress
Publisher American Mathematical Soc.
Pages 218
Release 2009-10-09
Genre Science
ISBN 0821848887

Download An Introduction to Theoretical Fluid Mechanics Book in PDF, Epub and Kindle

This book gives an overview of classical topics in fluid dynamics, focusing on the kinematics and dynamics of incompressible inviscid and Newtonian viscous fluids, but also including some material on compressible flow. The topics are chosen to illustrate the mathematical methods of classical fluid dynamics. The book is intended to prepare the reader for more advanced topics of current research interest.

Fluid Mechanics and the SPH Method

Fluid Mechanics and the SPH Method
Title Fluid Mechanics and the SPH Method PDF eBook
Author Damien Violeau
Publisher Oxford University Press
Pages
Release 2012-05-03
Genre Science
ISBN 019163509X

Download Fluid Mechanics and the SPH Method Book in PDF, Epub and Kindle

This book presents the SPH method (Smoothed-Particle Hydrodynamics) for fluid modelling from a theoretical and applied viewpoint. It comprises two parts that refer to each other. The first one, dealing with the fundamentals of Hydraulics, is based on the elementary principles of Lagrangian and Hamiltonian Mechanics. The specific laws governing a system of macroscopic particles are built, before large systems involving dissipative processes are explained. The continua are discussed,