Introduction To Commutative Algebra
Title | Introduction To Commutative Algebra PDF eBook |
Author | Michael F. Atiyah |
Publisher | CRC Press |
Pages | 140 |
Release | 2018-03-09 |
Genre | Mathematics |
ISBN | 0429973268 |
First Published in 2018. This book grew out of a course of lectures given to third year undergraduates at Oxford University and it has the modest aim of producing a rapid introduction to the subject. It is designed to be read by students who have had a first elementary course in general algebra. On the other hand, it is not intended as a substitute for the more voluminous tracts such as Zariski-Samuel or Bourbaki. We have concentrated on certain central topics, and large areas, such as field theory, are not touched. In content we cover rather more ground than Northcott and our treatment is substantially different in that, following the modern trend, we put more emphasis on modules and localization.
A Singular Introduction to Commutative Algebra
Title | A Singular Introduction to Commutative Algebra PDF eBook |
Author | Gert-Martin Greuel |
Publisher | Springer Science & Business Media |
Pages | 601 |
Release | 2012-12-06 |
Genre | Mathematics |
ISBN | 3662049635 |
This book can be understood as a model for teaching commutative algebra, and takes into account modern developments such as algorithmic and computational aspects. As soon as a new concept is introduced, the authors show how the concept can be worked on using a computer. The computations are exemplified with the computer algebra system Singular, developed by the authors. Singular is a special system for polynomial computation with many features for global as well as for local commutative algebra and algebraic geometry. The book includes a CD containing Singular as well as the examples and procedures explained in the book.
Introduction to Commutative Algebra and Algebraic Geometry
Title | Introduction to Commutative Algebra and Algebraic Geometry PDF eBook |
Author | Ernst Kunz |
Publisher | Springer Science & Business Media |
Pages | 253 |
Release | 2012-11-06 |
Genre | Mathematics |
ISBN | 1461459877 |
Originally published in 1985, this classic textbook is an English translation of Einführung in die kommutative Algebra und algebraische Geometrie. As part of the Modern Birkhäuser Classics series, the publisher is proud to make Introduction to Commutative Algebra and Algebraic Geometry available to a wider audience. Aimed at students who have taken a basic course in algebra, the goal of the text is to present important results concerning the representation of algebraic varieties as intersections of the least possible number of hypersurfaces and—a closely related problem—with the most economical generation of ideals in Noetherian rings. Along the way, one encounters many basic concepts of commutative algebra and algebraic geometry and proves many facts which can then serve as a basic stock for a deeper study of these subjects.
Commutative Algebra
Title | Commutative Algebra PDF eBook |
Author | David Eisenbud |
Publisher | Springer Science & Business Media |
Pages | 784 |
Release | 2013-12-01 |
Genre | Mathematics |
ISBN | 1461253500 |
This is a comprehensive review of commutative algebra, from localization and primary decomposition through dimension theory, homological methods, free resolutions and duality, emphasizing the origins of the ideas and their connections with other parts of mathematics. The book gives a concise treatment of Grobner basis theory and the constructive methods in commutative algebra and algebraic geometry that flow from it. Many exercises included.
Undergraduate Commutative Algebra
Title | Undergraduate Commutative Algebra PDF eBook |
Author | Miles Reid |
Publisher | Cambridge University Press |
Pages | 172 |
Release | 1995-11-30 |
Genre | Mathematics |
ISBN | 9780521458894 |
Commutative algebra is at the crossroads of algebra, number theory and algebraic geometry. This textbook is affordable and clearly illustrated, and is intended for advanced undergraduate or beginning graduate students with some previous experience of rings and fields. Alongside standard algebraic notions such as generators of modules and the ascending chain condition, the book develops in detail the geometric view of a commutative ring as the ring of functions on a space. The starting point is the Nullstellensatz, which provides a close link between the geometry of a variety V and the algebra of its coordinate ring A=k[V]; however, many of the geometric ideas arising from varieties apply also to fairly general rings. The final chapter relates the material of the book to more advanced topics in commutative algebra and algebraic geometry. It includes an account of some famous 'pathological' examples of Akizuki and Nagata, and a brief but thought-provoking essay on the changing position of abstract algebra in today's world.
Basic Commutative Algebra
Title | Basic Commutative Algebra PDF eBook |
Author | Balwant Singh |
Publisher | World Scientific |
Pages | 405 |
Release | 2011 |
Genre | Mathematics |
ISBN | 9814313629 |
This textbook, set for a one or two semester course in commutative algebra, provides an introduction to commutative algebra at the postgraduate and research levels. The main prerequisites are familiarity with groups, rings and fields. Proofs are self-contained. The book will be useful to beginners and experienced researchers alike. The material is so arranged that the beginner can learn through self-study or by attending a course. For the experienced researcher, the book may serve to present new perspectives on some well-known results, or as a reference.
Algebraic Geometry and Commutative Algebra
Title | Algebraic Geometry and Commutative Algebra PDF eBook |
Author | Siegfried Bosch |
Publisher | Springer Nature |
Pages | 504 |
Release | 2022-04-22 |
Genre | Mathematics |
ISBN | 1447175239 |
Algebraic Geometry is a fascinating branch of Mathematics that combines methods from both Algebra and Geometry. It transcends the limited scope of pure Algebra by means of geometric construction principles. Putting forward this idea, Grothendieck revolutionized Algebraic Geometry in the late 1950s by inventing schemes. Schemes now also play an important role in Algebraic Number Theory, a field that used to be far away from Geometry. The new point of view paved the way for spectacular progress, such as the proof of Fermat's Last Theorem by Wiles and Taylor. This book explains the scheme-theoretic approach to Algebraic Geometry for non-experts, while more advanced readers can use it to broaden their view on the subject. A separate part presents the necessary prerequisites from Commutative Algebra, thereby providing an accessible and self-contained introduction to advanced Algebraic Geometry. Every chapter of the book is preceded by a motivating introduction with an informal discussion of its contents and background. Typical examples, and an abundance of exercises illustrate each section. Therefore the book is an excellent companion for self-studying or for complementing skills that have already been acquired. It can just as well serve as a convenient source for (reading) course material and, in any case, as supplementary literature. The present edition is a critical revision of the earlier text.