Introduction to Coalgebra
Title | Introduction to Coalgebra PDF eBook |
Author | Bart Jacobs |
Publisher | Cambridge University Press |
Pages | 495 |
Release | 2017 |
Genre | Mathematics |
ISBN | 1107177898 |
An accessible introduction to coalgebra, with clear mathematical explanations and numerous examples and exercises.
Universal Algebra and Coalgebra
Title | Universal Algebra and Coalgebra PDF eBook |
Author | Klaus Denecke |
Publisher | World Scientific |
Pages | 291 |
Release | 2009 |
Genre | Mathematics |
ISBN | 9812837450 |
The purpose of this book is to study the structures needed to model objects in universal algebra, universal coalgebra and theoretical computer science. Universal algebra is used to describe different kinds of algebraic structures, while coalgebras are used to model state-based machines in computer science.The connection between algebras and coalgebras provides a way to connect static data-oriented systems with dynamical behavior-oriented systems. Algebras are used to describe data types and coalgebras describe abstract systems or machines.The book presents a clear overview of the area, from which further study may proceed.
Hopf Algebra
Title | Hopf Algebra PDF eBook |
Author | Sorin Dascalescu |
Publisher | CRC Press |
Pages | 420 |
Release | 2000-09-15 |
Genre | Mathematics |
ISBN | 1482270749 |
This study covers comodules, rational modules and bicomodules; cosemisimple, semiperfect and co-Frobenius algebras; bialgebras and Hopf algebras; actions and coactions of Hopf algebras on algebras; finite dimensional Hopf algebras, with the Nicholas-Zoeller and Taft-Wilson theorems and character theory; and more.
Tensor Categories
Title | Tensor Categories PDF eBook |
Author | Pavel Etingof |
Publisher | American Mathematical Soc. |
Pages | 362 |
Release | 2016-08-05 |
Genre | Mathematics |
ISBN | 1470434415 |
Is there a vector space whose dimension is the golden ratio? Of course not—the golden ratio is not an integer! But this can happen for generalizations of vector spaces—objects of a tensor category. The theory of tensor categories is a relatively new field of mathematics that generalizes the theory of group representations. It has deep connections with many other fields, including representation theory, Hopf algebras, operator algebras, low-dimensional topology (in particular, knot theory), homotopy theory, quantum mechanics and field theory, quantum computation, theory of motives, etc. This book gives a systematic introduction to this theory and a review of its applications. While giving a detailed overview of general tensor categories, it focuses especially on the theory of finite tensor categories and fusion categories (in particular, braided and modular ones), and discusses the main results about them with proofs. In particular, it shows how the main properties of finite-dimensional Hopf algebras may be derived from the theory of tensor categories. Many important results are presented as a sequence of exercises, which makes the book valuable for students and suitable for graduate courses. Many applications, connections to other areas, additional results, and references are discussed at the end of each chapter.
Quantum Groups
Title | Quantum Groups PDF eBook |
Author | Steven Shnider |
Publisher | International Press of Boston |
Pages | 528 |
Release | 1993 |
Genre | Mathematics |
ISBN |
An introduction to the field of quantum groups, including topology and statistical mechanics, based on lectures given at the Sackler Institute for Advanced Studies at Tel-Aviv University. Detailed proofs of the main results are presented and the bibliography contains more than 1260 references.
Introduction to the Quantum Yang-Baxter Equation and Quantum Groups: An Algebraic Approach
Title | Introduction to the Quantum Yang-Baxter Equation and Quantum Groups: An Algebraic Approach PDF eBook |
Author | L.A. Lambe |
Publisher | Springer Science & Business Media |
Pages | 314 |
Release | 2013-11-22 |
Genre | Mathematics |
ISBN | 1461541093 |
Chapter 1 The algebraic prerequisites for the book are covered here and in the appendix. This chapter should be used as reference material and should be consulted as needed. A systematic treatment of algebras, coalgebras, bialgebras, Hopf algebras, and represen tations of these objects to the extent needed for the book is given. The material here not specifically cited can be found for the most part in [Sweedler, 1969] in one form or another, with a few exceptions. A great deal of emphasis is placed on the coalgebra which is the dual of n x n matrices over a field. This is the most basic example of a coalgebra for our purposes and is at the heart of most algebraic constructions described in this book. We have found pointed bialgebras useful in connection with solving the quantum Yang-Baxter equation. For this reason we develop their theory in some detail. The class of examples described in Chapter 6 in connection with the quantum double consists of pointed Hopf algebras. We note the quantized enveloping algebras described Hopf algebras. Thus for many reasons pointed bialgebras are elsewhere are pointed of fundamental interest in the study of the quantum Yang-Baxter equation and objects quantum groups.
Hopf Algebras
Title | Hopf Algebras PDF eBook |
Author | Jeffrey Bergen |
Publisher | CRC Press |
Pages | 282 |
Release | 2004-01-28 |
Genre | Mathematics |
ISBN | 9780824755669 |
This volume publishes key proceedings from the recent International Conference on Hopf Algebras held at DePaul University, Chicago, Illinois. With contributions from leading researchers in the field, this collection deals with current topics ranging from categories of infinitesimal Hopf modules and bimodules to the construction of a Hopf algebraic Morita invariant. It uses the newly introduced theory of bi-Frobenius algebras to investigate a notion of group-like algebras and summarizes results on the classification of Hopf algebras of dimension pq. It also explores pre-Lie, dendriform, and Nichols algebras and discusses support cones for infinitesimal group schemes.