Introduction to Calculus and Classical Analysis
Title | Introduction to Calculus and Classical Analysis PDF eBook |
Author | Omar Hijab |
Publisher | Springer |
Pages | 364 |
Release | 2013-04-19 |
Genre | Mathematics |
ISBN | 9781461428428 |
This text is intended for an honors calculus course or for an introduction to analysis. Involving rigorous analysis, computational dexterity, and a breadth of applications, it is ideal for undergraduate majors. This third edition includes corrections as well as some additional material. Some features of the text include: The text is completely self-contained and starts with the real number axioms; The integral is defined as the area under the graph, while the area is defined for every subset of the plane; There is a heavy emphasis on computational problems, from the high-school quadratic formula to the formula for the derivative of the zeta function at zero; There are applications from many parts of analysis, e.g., convexity, the Cantor set, continued fractions, the AGM, the theta and zeta functions, transcendental numbers, the Bessel and gamma functions, and many more; Traditionally transcendentally presented material, such as infinite products, the Bernoulli series, and the zeta functional equation, is developed over the reals; and There are 385 problems with all the solutions at the back of the text.
Introduction to Calculus and Analysis II/1
Title | Introduction to Calculus and Analysis II/1 PDF eBook |
Author | Richard Courant |
Publisher | Springer Science & Business Media |
Pages | 585 |
Release | 2012-12-06 |
Genre | Mathematics |
ISBN | 3642571492 |
From the reviews: "...one of the best textbooks introducing several generations of mathematicians to higher mathematics. ... This excellent book is highly recommended both to instructors and students." --Acta Scientiarum Mathematicarum, 1991
Advanced Calculus
Title | Advanced Calculus PDF eBook |
Author | Louis Brand |
Publisher | |
Pages | 606 |
Release | 1955 |
Genre | Calculus |
ISBN |
Introduction to Calculus and Classical Analysis
Title | Introduction to Calculus and Classical Analysis PDF eBook |
Author | Omar Hijab |
Publisher | Springer Science & Business Media |
Pages | 345 |
Release | 2007-05-15 |
Genre | Mathematics |
ISBN | 0387693157 |
Intended for an honors calculus course or for an introduction to analysis, this is an ideal text for undergraduate majors since it covers rigorous analysis, computational dexterity, and a breadth of applications. The book contains many remarkable features: * complete avoidance of /epsilon-/delta arguments by using sequences instead * definition of the integral as the area under the graph, while area is defined for every subset of the plane * complete avoidance of complex numbers * heavy emphasis on computational problems * applications from many parts of analysis, e.g. convex conjugates, Cantor set, continued fractions, Bessel functions, the zeta functions, and many more * 344 problems with solutions in the back of the book.
Calculus on Manifolds
Title | Calculus on Manifolds PDF eBook |
Author | Michael Spivak |
Publisher | Westview Press |
Pages | 164 |
Release | 1965 |
Genre | Science |
ISBN | 9780805390216 |
This book uses elementary versions of modern methods found in sophisticated mathematics to discuss portions of "advanced calculus" in which the subtlety of the concepts and methods makes rigor difficult to attain at an elementary level.
Introduction to Analysis in Several Variables: Advanced Calculus
Title | Introduction to Analysis in Several Variables: Advanced Calculus PDF eBook |
Author | Michael E. Taylor |
Publisher | American Mathematical Soc. |
Pages | 445 |
Release | 2020-07-27 |
Genre | Education |
ISBN | 1470456699 |
This text was produced for the second part of a two-part sequence on advanced calculus, whose aim is to provide a firm logical foundation for analysis. The first part treats analysis in one variable, and the text at hand treats analysis in several variables. After a review of topics from one-variable analysis and linear algebra, the text treats in succession multivariable differential calculus, including systems of differential equations, and multivariable integral calculus. It builds on this to develop calculus on surfaces in Euclidean space and also on manifolds. It introduces differential forms and establishes a general Stokes formula. It describes various applications of Stokes formula, from harmonic functions to degree theory. The text then studies the differential geometry of surfaces, including geodesics and curvature, and makes contact with degree theory, via the Gauss–Bonnet theorem. The text also takes up Fourier analysis, and bridges this with results on surfaces, via Fourier analysis on spheres and on compact matrix groups.
Introduction to Calculus and Classical Analysis
Title | Introduction to Calculus and Classical Analysis PDF eBook |
Author | O. Hijab |
Publisher | Springer Science & Business Media |
Pages | 336 |
Release | 1997 |
Genre | Calculus |
ISBN | 9780387949260 |
As an excellent, easy-to-understand introduction to analysis, this book involves rigorous analysis, computational dexterity, and a breadth of applications, making it ideal for undergraduate majors. The book contains many remarkable features, including a heavy emphasis on computational problems and applications from many parts of analysis. The work completely avoids treating complex numbers. Nearly 350 problems with solutions are included in the back of the book.