Interpolation and Extrapolation Optimal Designs 2
Title | Interpolation and Extrapolation Optimal Designs 2 PDF eBook |
Author | Giorgio Celant |
Publisher | John Wiley & Sons |
Pages | 324 |
Release | 2017-05-08 |
Genre | Mathematics |
ISBN | 1786300540 |
This book considers various extensions of the topics treated in the first volume of this series, in relation to the class of models and the type of criterion for optimality. The regressors are supposed to belong to a generic finite dimensional Haar linear space, which substitutes for the classical polynomial case. The estimation pertains to a general linear form of the coefficients of the model, extending the interpolation and extrapolation framework; the errors in the model may be correlated, and the model may be heteroscedastic. Non-linear models, as well as multivariate ones, are briefly discussed. The book focuses to a large extent on criteria for optimality, and an entire chapter presents algorithms leading to optimal designs in multivariate models. Elfving’s theory and the theorem of equivalence are presented extensively. The volume presents an account of the theory of the approximation of real valued functions, which makes it self-consistent.
Interpolation and Extrapolation Optimal Designs V1
Title | Interpolation and Extrapolation Optimal Designs V1 PDF eBook |
Author | Giorgio Celant |
Publisher | John Wiley & Sons |
Pages | 292 |
Release | 2016-06-07 |
Genre | Mathematics |
ISBN | 1848219954 |
This book is the first of a series which focuses on the interpolation and extrapolation of optimal designs, an area with significant applications in engineering, physics, chemistry and most experimental fields. In this volume, the authors emphasize the importance of problems associated with the construction of design. After a brief introduction on how the theory of optimal designs meets the theory of the uniform approximation of functions, the authors introduce the basic elements to design planning and link the statistical theory of optimal design and the theory of the uniform approximation of functions. The appendices provide the reader with material to accompany the proofs discussed throughout the book.
mODa 11 - Advances in Model-Oriented Design and Analysis
Title | mODa 11 - Advances in Model-Oriented Design and Analysis PDF eBook |
Author | Joachim Kunert |
Publisher | Springer |
Pages | 256 |
Release | 2016-06-06 |
Genre | Mathematics |
ISBN | 3319312669 |
This volume contains pioneering contributions to both the theory and practice of optimal experimental design. Topics include the optimality of designs in linear and nonlinear models, as well as designs for correlated observations and for sequential experimentation. There is an emphasis on applications to medicine, in particular, to the design of clinical trials. Scientists from Europe, the US, Asia, Australia and Africa contributed to this volume of papers from the 11th Workshop on Model Oriented Design and Analysis.
Convex Optimization
Title | Convex Optimization PDF eBook |
Author | Mikhail Moklyachuk |
Publisher | John Wiley & Sons |
Pages | 213 |
Release | 2021-01-05 |
Genre | Mathematics |
ISBN | 1119804086 |
This book provides easy access to the basic principles and methods for solving constrained and unconstrained convex optimization problems. Included are sections that cover: basic methods for solving constrained and unconstrained optimization problems with differentiable objective functions; convex sets and their properties; convex functions and their properties and generalizations; and basic principles of sub-differential calculus and convex programming problems. Convex Optimization provides detailed proofs for most of the results presented in the book and also includes many figures and exercises for a better understanding of the material. Exercises are given at the end of each chapter, with solutions and hints to selected exercises given at the end of the book. Undergraduate and graduate students, researchers in different disciplines, as well as practitioners will all benefit from this accessible approach to convex optimization methods.
Interpolation and Extrapolation Optimal Designs 2
Title | Interpolation and Extrapolation Optimal Designs 2 PDF eBook |
Author | Giorgio Celant |
Publisher | John Wiley & Sons |
Pages | 322 |
Release | 2017-04-11 |
Genre | Mathematics |
ISBN | 1119422361 |
This book considers various extensions of the topics treated in the first volume of this series, in relation to the class of models and the type of criterion for optimality. The regressors are supposed to belong to a generic finite dimensional Haar linear space, which substitutes for the classical polynomial case. The estimation pertains to a general linear form of the coefficients of the model, extending the interpolation and extrapolation framework; the errors in the model may be correlated, and the model may be heteroscedastic. Non-linear models, as well as multivariate ones, are briefly discussed. The book focuses to a large extent on criteria for optimality, and an entire chapter presents algorithms leading to optimal designs in multivariate models. Elfving’s theory and the theorem of equivalence are presented extensively. The volume presents an account of the theory of the approximation of real valued functions, which makes it self-consistent.
Random Evolutionary Systems
Title | Random Evolutionary Systems PDF eBook |
Author | Dmitri Koroliouk |
Publisher | John Wiley & Sons |
Pages | 345 |
Release | 2021-08-02 |
Genre | Mathematics |
ISBN | 1119851246 |
Within the field of modeling complex objects in natural sciences, which considers systems that consist of a large number of interacting parts, a good tool for analyzing and fitting models is the theory of random evolutionary systems, considering their asymptotic properties and large deviations. In Random Evolutionary Systems we consider these systems in terms of the operators that appear in the schemes of their diffusion and the Poisson approximation. Such an approach allows us to obtain a number of limit theorems and asymptotic expansions of processes that model complex stochastic systems, both those that are autonomous and those dependent on an external random environment. In this case, various possibilities of scaling processes and their time parameters are used to obtain different limit results.
Mathematical Modeling of Random and Deterministic Phenomena
Title | Mathematical Modeling of Random and Deterministic Phenomena PDF eBook |
Author | Solym Mawaki Manou-Abi |
Publisher | John Wiley & Sons |
Pages | 264 |
Release | 2020-02-19 |
Genre | Mathematics |
ISBN | 1119706912 |
This book highlights mathematical research interests that appear in real life, such as the study and modeling of random and deterministic phenomena. As such, it provides current research in mathematics, with applications in biological and environmental sciences, ecology, epidemiology and social perspectives. The chapters can be read independently of each other, with dedicated references specific to each chapter. The book is organized in two main parts. The first is devoted to some advanced mathematical problems regarding epidemic models; predictions of biomass; space-time modeling of extreme rainfall; modeling with the piecewise deterministic Markov process; optimal control problems; evolution equations in a periodic environment; and the analysis of the heat equation. The second is devoted to a modelization with interdisciplinarity in ecological, socio-economic, epistemological, demographic and social problems. Mathematical Modeling of Random and Deterministic Phenomena is aimed at expert readers, young researchers, plus graduate and advanced undergraduate students who are interested in probability, statistics, modeling and mathematical analysis.