Integrated Analytical Systems

Integrated Analytical Systems
Title Integrated Analytical Systems PDF eBook
Author Salvador Alegret
Publisher Gulf Professional Publishing
Pages 744
Release 2003-06-19
Genre Medical
ISBN 9780444510372

Download Integrated Analytical Systems Book in PDF, Epub and Kindle

Lntegration, a new paradigm in analytical chemistry; Integration in science and technology; Integration in analytical chemistry; Partsand components; Supportedreagents; Separation membranes; Systems; Total analysis systems; Miniaturised systems; Networked systems; Sensors; Electrochemical sensors; Optochemical sensors; Arraysystems; Redundant-sensor array systems; Selective-sensor array systems; Cross-selective sensor array systems; Microsystems; Microsensors; Analytical microsystems; Array microsystems; Nanosystems; Conclusions and perspectives; lntegrated separation systems; General principIes ofbi-phase separation; Thermodynamics ofbi-phase equilibrium; Integration concepts in bi-phase separation; Integration of uptake and stripping steps; Multiplication of single separation effect; Frontal íon exchange chromatography; Reverse frontal íon exchange chromatography; Displacement chromatography; Tandem íon exchange fractionation; Combined separation techniques; Solvent extraction-ion exchange. Aqua impregnated resins; Ion exchange-crystallisation. Ion exchange isothermal supersaturation; Ion exchange supersaturation of zwitterlites; Ion exchange supersaturation of electrolytes; Solid-phase spectrometric assays; Integration of processes in solid-phase spectrometric assays; Types of solid-phase spectrometric assays; Features of solid-phase spectrometric assays; Particulated solid-phase spectrometric assays; Fixation process; Operational aspects; Analytical characteristics; Mixtures resolution; Analytical applications; Membrane solid-phase spectrometric assays; Membrane filtration systems; Membrane 'problem' equilibration systems; Membrane 'problem' deposit systems; Continuous flow analytical systems; Reverse flow injection; Integrating effect of conventional flow injection units; Confluencepoints; Exchangedunits; Modifiedunits; Duplicateunits; Derivatisation reactions in flow injection systems; Redox reactions involving solid reagents; Micellar media; Photoinduced reactions; Electrogenerated reagents; Catalytic reactions; External energy sources integrated with flow injection; Conventional heat sources; illtrasound energy sources; Use of electrical energy; Microwave energy assistance; In-line coupling of simple non-chromatographic continuous separation units and flow injection manifolds; Couplings with techniques involving gas-separation: gas-diffusers, pervaporators and others; Couplings with liquid-liquid separators: dialysers and liquid-liquid extractors; Couplingswith liquid-solid separators and solid phase formation; On-line separation equipment and flow injection manifolds; On-line coupling of robotics and flow injection manifolds; Detection in flow injection; Flow injection-detector interfaces; Automatic calibration; Special uses of conventional detectors coupled to FI; Three-dimensional and complex detectors coupled to FI; Screening and flow injection Integration and flow injection; Distributed analytical instrumentation systems; Theremoteconcept; Elements in a measurement system; Distributed systems topologies; Theremoteplace; The benefits of distributed intelligence; The computer-controlling function; Virtual instruments; Smart/intelligent sensors; The link; Industrial networks; Ethernet; Wireless links; The local place; Remote analytical instruments/systems: application examples; Laboratory information management systems; The analytical laboratory; Role of an analytical laboratory; Need to increase productivity; The aims oflaboratory automation; Problems with laboratory automation; Solutions for laboratory automation; What is laboratory automation?; A definition oflaboratory automation; Laboratory automation constituent groups; Instrument automation; Communications; Data to information conversion; Information management; A laboratory automation strategy in practice; Laboratory Information Management Systems; What is a LIMS?; A LIMS has two targets; Construction of the LIMS matrix; LIMS matrix views; Organisational integration and LIMS; LIMS and the system development life cycle; System development life cycle; Project proposal; The LIMS project team; User requirements specification and system selection; Functional specification; Qualification of the system; User training and roll-out strategies; Project close-out; Post-implementation review; Enhancement ofthe system and controlling change; Chemically modified electrodes with integrated biomolecules and molecular wires; Enzyme redox catalysis; Redox hydrogels; Self-assembled polyelectrolyte and protein films; Self-assembled enzyme films; Electrocatalysis; Electronhopping; Different molecular architectures; Structure ofself-assembled enzyme films; Atomic force microscopy; Ellipsometry; Combination of QCM and ellipsometric measurements; Infrared spectroscopy (FTIR); Composite and biocomposite materiais forelectrochemicalsensing; Composite electrode materiaIs; Conducting composite; Conducting biocomposites; Composite- and biocomposite-based electrochemical sensors; Conductometric sensors; Potentiometric sensors; Amperometric sensors; Thick-film sensors; Sensors for voltammetric stripping techniques; Optical chemical sensors and biosensor; Sensor structure; Optical fibers; Optoelectronic instrumentation; Molecular recognition element; Sensor designs; Modes of optical signal measurements; Absorbance measurement; Reflectance measurement; Fluorescence measurement; Chemiluminescence measurement; Electronic tongues: new analytical perspective of chemical sensors; General approach to the application of sensor arrays; Why use sensor systems?; Inspirations from chemometrics and biology; Advantages of sensor systems in comparlson with discrete sensors; Specific features of the sensors for the electronictongue; Electronic tongue systems; Sensors; System designs; Hybrid systems; Data processing; Selected applications ofthe electronic tongue; Application areas and analytes; Quantitative analysis; Qualitative analysis, recognition, identification andclassification; Comparison with human perception offlavours; Taste quantification; Application ofhybrid systems; Problems and perspective; A Taste sensor; Structure of the taste sensor; Response characteristics; Aminoacids; Classification oftaste ofamino acids; Discrimination of D-amino acids from L-aminoacids; Quantification ofthe taste of foods; Interaction between taste qualities; Suppression ofbitterness due to phospholipids; Scale ofbitterness; Suppression of bitterness due to taste substances; Detection of wine flavor using taste sensor and electronic nose; Perspective; Application of electronic nose technology for monitoring water and wastewater; Electronic nose technology; Sensor types; Analysis ofelectronic nose data; Electronic nose instrumentation; Sensor array components; Commercial systems; Application to water and wastewater monitoring; Laboratory-based systems; On-line monitoring systems; lntegrated optical transducers for (bio)chemical sensing; Basic concepts; Fundamentals of optical waveguides; Detection principIes: Types of devices; Technologies for integrated optical transducer fabrication; Substrate materiaIs and specific processes; Basic technological processes; Integrated optical sensors; Absorbancesensor; Gratingcoupler; Resonantmirror; Mach-Zehnder interferometer; Towards a total integrated system; High arder hybrid FET module for (bio)chemical andphysicalsensing; Design concepts of(bio)chemical sensor arrays; High arder sensor module based on an identical transducer principIe; Hybrid module design; ISFET fabrication; Measuring system and sensor configurations; Multi-parameter detection of both (bio)chemical and physical quantities using the same transducer principIe; ISFET-based pH sensor; ISFET-based penicillin sensor; ISFET-based temperature sensor; ISFET-based flow-velocity sensor; ISFET-based flow-direction sensor;ISFET-based diffusion-coefficient sensor; ISFET-based bioelectronic sensor; Applications of the hybrid sensor module; pH determination in human urine; pH measurement in rain droplets; Summary and conclusion; Microdialysis based lab-on-a-chip, applying a generic MEM Stechnology; The need for in vivo monitoring; Microdialysis; The microdialysis lab-on-a-chip; The micromachined double lumen microdialysis probe connector; The conventional microdialysis probe; Experimental; Results and discussion; The passive and the active calibration system; Passive contraI of a calibration plug; Active contraI of a calibration plug; Closed-loop controlled electrochemically actuated microdosing system; The flow-through potentiometric and amperometric sensor array; The flow-through potentiometric sensorarray; The flow-through reference electrode; The flow-through amperometric sensor; The integrated microdialysis-based lab-on-a-chip; The complete integrated microdialysis lab-on-a-chip; Measurements; Design methodology for a lab-on-a-chip for chemical analysis: the MAFIAS chip; The design path; The design; Chemistry; System schematics; Channel geometry; Specifications for the components; Thecomponents; Nanosensor and nanoprobe systems for in vivo bioanalysis; Background on biosensors and bioreceptors; Biosensing systems; Bioreceptor probes; Fiberoptics nanosensor system; Fabrication of the fiberoptic nanoprobe; Immobilization of receptors onto fiber nanoprobes; Experimental system and protocol for nanoprobe investigation of single cells; Optical measurement system; Applications in bioanalysis; Optical nanofiber probes for fluorescence measurements; Single-cell measurements using antibody-based nanoprobes.

Microdroplet Technology

Microdroplet Technology
Title Microdroplet Technology PDF eBook
Author Philip Day
Publisher Springer Science & Business Media
Pages 249
Release 2012-07-28
Genre Science
ISBN 1461432650

Download Microdroplet Technology Book in PDF, Epub and Kindle

Microdroplet technology has recently emerged to provide new and diverse applications via microfluidic functionality, especially in various areas of biology and chemistry. This book, then, gives an overview of the principle components and wide-ranging applications for state-of-the-art of droplet-based microfluidics. Chapter authors are internationally-leading researchers from chemistry, biology, physics and engineering that present various key aspects of micrdroplet technology -- fundamental flow physics, methodology and components for flow control, applications in biology and chemistry, and a discussion of future perspectives. This book acts as a reference for academics, post-graduate students, and researcher wishing to deepen their understand of microfluidics and introduce optimal design and operation of new droplet-based microfluidic devices for more comprehensive analyte assessments.

Microarrays

Microarrays
Title Microarrays PDF eBook
Author Kilian Dill
Publisher Springer Science & Business Media
Pages 355
Release 2008-12-30
Genre Science
ISBN 0387727191

Download Microarrays Book in PDF, Epub and Kindle

Combinatorial chemistry is used to find materials that form sensor microarrays. This book discusses the fundamentals, and then proceeds to the many applications of microarrays, from measuring gene expression (DNA microarrays) to protein-protein interactions, peptide chemistry, carbodhydrate chemistry, electrochemical detection, and microfluidics.

Automation Solutions for Analytical Measurements

Automation Solutions for Analytical Measurements
Title Automation Solutions for Analytical Measurements PDF eBook
Author Heidi Fleischer
Publisher John Wiley & Sons
Pages 336
Release 2017-08-30
Genre Science
ISBN 352780532X

Download Automation Solutions for Analytical Measurements Book in PDF, Epub and Kindle

The first book dedicated specifically to automated sample preparation and analytical measurements, this timely and systematic overview not only covers biological applications, but also environmental measuring technology, drug discovery, and quality assurance. Following a critical review of realized automation solutions in biological sciences, the book goes on to discuss special requirements for comparable systems for analytical applications, taking different concepts into consideration and with examples chosen to illustrate the scope and limitations of each technique.

Microsystem Technology in Chemistry and Life Sciences

Microsystem Technology in Chemistry and Life Sciences
Title Microsystem Technology in Chemistry and Life Sciences PDF eBook
Author Andreas Manz
Publisher Springer Science & Business Media
Pages 268
Release 1999-04
Genre Medical
ISBN 9783540655558

Download Microsystem Technology in Chemistry and Life Sciences Book in PDF, Epub and Kindle

"WHAT DOES NOT NEED TO BE BIG, WILL BE SMALL", a word by an engineer at a recent conference on chips technology. This sentence is particularly true for chemistry. Microfabrication technology emerged from microelectronics into areas like mechanics and now chemistry and biology. The engineering of micron and submicron sized features on the surface of silicon, glass and polymers opens a whole new world. Micromotors smaller than human hair have been fabricated and they work fine. It is the declared goal of the authors to bring these different worlds together in this volume. Authors have been carefully chosen to guarantee for the quality of the contents. An engineer, a chemist or a biologist will find new impulses from the various chapters in this book.

Process Analytical Technology

Process Analytical Technology
Title Process Analytical Technology PDF eBook
Author Katherine A. Bakeev
Publisher John Wiley & Sons
Pages 576
Release 2010-04-01
Genre Science
ISBN 0470689609

Download Process Analytical Technology Book in PDF, Epub and Kindle

Process Analytical Technology explores the concepts of PAT and its application in the chemical and pharmaceutical industry from the point of view of the analytical chemist. In this new edition all of the original chapters have been updated and revised, and new chapters covering the important topics of sampling, NMR, fluorescence, and acoustic chemometrics have been added. Coverage includes: Implementation of Process Analytical Technologies UV-Visible Spectroscopy for On-line Analysis Infrared Spectroscopy for Process Analytical Applications Process Raman Spectroscopy Process NMR Spectrscopy: Technology and On-line Applications Fluorescent Sensing and Process Analytical Applications Chemometrics in Process Analytical Technology (PAT) On-Line PAT Applications of Spectroscopy in the Pharmaceutical Industry Future Trends for PAT for Increased Process Understanding and Growing Applications in Biomanufacturing NIR Chemical Imaging This volume is an important starting point for anyone wanting to implement PAT and is intended not only to assist a newcomer to the field but also to provide up-to-date information for those who practice process analytical chemistry and PAT. It is relevant for chemists, chemical and process engineers, and analytical chemists working on process development, scale-up and production in the pharmaceutical, fine and specialty chemicals industries, as well as for academic chemistry, chemical engineering, chemometrics and pharmaceutical science research groups focussing on PAT. Review from the First Edition “The book provides an excellent first port of call for anyone seeking material and discussions to understand the area better. It deserves to be found in every library that serves those who are active in the field of Process Analytical Technology.”—Current Engineering Practice

Microfluidics for Single-Cell Analysis

Microfluidics for Single-Cell Analysis
Title Microfluidics for Single-Cell Analysis PDF eBook
Author Jin-Ming Lin
Publisher Springer Nature
Pages 263
Release 2019-08-28
Genre Science
ISBN 9813297298

Download Microfluidics for Single-Cell Analysis Book in PDF, Epub and Kindle

This book summarizes the various microfluidic-based approaches for single-cell capture, isolation, manipulation, culture and observation, lysis, and analysis. Single-cell analysis reveals the heterogeneities in morphology, functions, composition, and genetic performance of seemingly identical cells, and advances in single-cell analysis can overcome the difficulties arising due to cell heterogeneity in the diagnostics for a targeted model of disease. This book provides a detailed review of the state-of-the-art techniques presenting the pros and cons of each of these methods. It also offers lessons learned and tips from front-line investigators to help researchers overcome bottlenecks in their own studies. Highlighting a number of techniques, such as microfluidic droplet techniques, combined microfluidics-mass-spectrometry systems, and nanochannel sampling, it describes in detail a new microfluidic chip-based live single-cell extractor (LSCE) developed in the editor’s laboratory, which opens up new avenues to use open microfluidics in single-cell extraction, single-cell mass spectrometric analysis, single-cell adhesion analysis and subcellular operations. Serving as both an elementary introduction and advanced guidebook, this book interests and inspires scholars and students who are currently studying or wish to study microfluidics-based cell analysis methods.