Integral Transform Techniques for Green's Function

Integral Transform Techniques for Green's Function
Title Integral Transform Techniques for Green's Function PDF eBook
Author Kazumi Watanabe
Publisher Springer
Pages 274
Release 2015-04-20
Genre Technology & Engineering
ISBN 331917455X

Download Integral Transform Techniques for Green's Function Book in PDF, Epub and Kindle

This book describes mathematical techniques for integral transforms in a detailed but concise manner. The techniques are subsequently applied to the standard partial differential equations, such as the Laplace equation, the wave equation and elasticity equations. Green’s functions for beams, plates and acoustic media are also shown, along with their mathematical derivations. The Cagniard-de Hoop method for double inversion is described in detail and 2D and 3D elastodynamic problems are treated in full. This new edition explains in detail how to introduce the branch cut for the multi-valued square root function. Further, an exact closed form Green’s function for torsional waves is presented, as well as an application technique of the complex integral, which includes the square root function and an application technique of the complex integral.

Green's Function Integral Equation Methods in Nano-Optics

Green's Function Integral Equation Methods in Nano-Optics
Title Green's Function Integral Equation Methods in Nano-Optics PDF eBook
Author Thomas M. Søndergaard
Publisher CRC Press
Pages 418
Release 2019-01-30
Genre Technology & Engineering
ISBN 1351260197

Download Green's Function Integral Equation Methods in Nano-Optics Book in PDF, Epub and Kindle

This book gives a comprehensive introduction to Green’s function integral equation methods (GFIEMs) for scattering problems in the field of nano-optics. First, a brief review is given of the most important theoretical foundations from electromagnetics, optics, and scattering theory, including theory of waveguides, Fresnel reflection, and scattering, extinction, and absorption cross sections. This is followed by a presentation of different types of GFIEMs of increasing complexity for one-, two-, and three-dimensional scattering problems. In GFIEMs, the electromagnetic field at any position is directly related to the field at either the inside or the surface of a scattering object placed in a reference structure. The properties of the reference structure, and radiating or periodic boundary conditions, are automatically taken care of via the choice of Green’s function. This book discusses in detail how to solve the integral equations using either simple or higher-order finite-element-based methods; how to calculate the relevant Green’s function for different reference structures and choices of boundary conditions; and how to calculate near-fields, optical cross sections, and the power emitted by a local source. Solution strategies for large structures are discussed based on either transfer-matrix-approaches or the conjugate gradient algorithm combined with the Fast Fourier Transform. Special attention is given to reducing the computational problem for three-dimensional structures with cylindrical symmetry by using cylindrical harmonic expansions. Each presented method is accompanied by examples from nano-optics, including: resonant metal nano-particles placed in a homogeneous medium or on a surface or waveguide; a microstructured gradient-index-lens; the Purcell effect for an emitter in a photonic crystal; the excitation of surface plasmon polaritons by second-harmonic generation in a polymer fiber placed on a thin metal film; and anti-reflective, broadband absorbing or resonant surface microstructures. Each presented method is also accompanied by guidelines for software implementation and exercises. Features Comprehensive introduction to Green’s function integral equation methods for scattering problems in the field of nano-optics Detailed explanation of how to discretize and solve integral equations using simple and higher-order finite-element approaches Solution strategies for large structures Guidelines for software implementation and exercises Broad selection of examples of scattering problems in nano-optics

Applied Integral Transforms

Applied Integral Transforms
Title Applied Integral Transforms PDF eBook
Author M. Ya. Antimirov
Publisher American Mathematical Soc.
Pages 288
Release 2007
Genre Mathematics
ISBN 9780821843147

Download Applied Integral Transforms Book in PDF, Epub and Kindle

This book constructs the kernels of integral transforms by solving the generalized Sturm-Liouville problems associated with the partial differential equations at hand. In the first part of the book, the authors construct the kernels and use them to solve elementary problems of mathematical physics. This part requires little mathematical background and provides an introduction to the subject of integral transforms as it proceeds mainly by examples and includes a variety of exercises. In the second part of the book, the method of integral transforms is used to solve modern applied problems in convective stability, temperature fields in oil strata, and eddy-current testing. The choice of topics reflects the authors' research experience and involvement in industrial applications. The first part of the book is accessible to undergraduates, while the second part is aimed at graduate students and researchers. Because of the applications, the book will interest engineers (especially petroleum engineers) and physicists.

Integral Transforms and Their Applications

Integral Transforms and Their Applications
Title Integral Transforms and Their Applications PDF eBook
Author B. Davies
Publisher Springer Science & Business Media
Pages 427
Release 2013-11-27
Genre Mathematics
ISBN 1475755120

Download Integral Transforms and Their Applications Book in PDF, Epub and Kindle

This book is intended to serve as introductory and reference material for the application of integral transforms to a range of common mathematical problems. It has its im mediate origin in lecture notes prepared for senior level courses at the Australian National University, although I owe a great deal to my colleague Barry Ninham, a matter to which I refer below. In preparing the notes for publication as a book, I have added a considerable amount of material ad- tional to the lecture notes, with the intention of making the book more useful, particularly to the graduate student - volved in the solution of mathematical problems in the physi cal, chemical, engineering and related sciences. Any book is necessarily a statement of the author's viewpoint, and involves a number of compromises. My prime consideration has been to produce a work whose scope is selective rather than encyclopedic; consequently there are many facets of the subject which have been omitted--in not a few cases after a preliminary draft was written--because I v believe that their inclusion would make the book too long.

Mathematical Physics with Partial Differential Equations

Mathematical Physics with Partial Differential Equations
Title Mathematical Physics with Partial Differential Equations PDF eBook
Author James Kirkwood
Publisher Academic Press
Pages 431
Release 2012-01-20
Genre Mathematics
ISBN 0123869110

Download Mathematical Physics with Partial Differential Equations Book in PDF, Epub and Kindle

Suitable for advanced undergraduate and beginning graduate students taking a course on mathematical physics, this title presents some of the most important topics and methods of mathematical physics. It contains mathematical derivations and solutions - reinforcing the material through repetition of both the equations and the techniques.

Partial Differential Equations in Mechanics 2

Partial Differential Equations in Mechanics 2
Title Partial Differential Equations in Mechanics 2 PDF eBook
Author A.P.S. Selvadurai
Publisher Springer Science & Business Media
Pages 713
Release 2013-06-29
Genre Technology & Engineering
ISBN 3662092050

Download Partial Differential Equations in Mechanics 2 Book in PDF, Epub and Kindle

This two-volume work focuses on partial differential equations (PDEs) with important applications in mechanical and civil engineering, emphasizing mathematical correctness, analysis, and verification of solutions. The presentation involves a discussion of relevant PDE applications, its derivation, and the formulation of consistent boundary conditions.

Techniques of Functional Analysis for Differential and Integral Equations

Techniques of Functional Analysis for Differential and Integral Equations
Title Techniques of Functional Analysis for Differential and Integral Equations PDF eBook
Author Paul Sacks
Publisher Academic Press
Pages 322
Release 2017-05-16
Genre Mathematics
ISBN 0128114576

Download Techniques of Functional Analysis for Differential and Integral Equations Book in PDF, Epub and Kindle

Techniques of Functional Analysis for Differential and Integral Equations describes a variety of powerful and modern tools from mathematical analysis, for graduate study and further research in ordinary differential equations, integral equations and partial differential equations. Knowledge of these techniques is particularly useful as preparation for graduate courses and PhD research in differential equations and numerical analysis, and more specialized topics such as fluid dynamics and control theory. Striking a balance between mathematical depth and accessibility, proofs involving more technical aspects of measure and integration theory are avoided, but clear statements and precise alternative references are given . The work provides many examples and exercises drawn from the literature. - Provides an introduction to mathematical techniques widely used in applied mathematics and needed for advanced research in ordinary and partial differential equations, integral equations, numerical analysis, fluid dynamics and other areas - Establishes the advanced background needed for sophisticated literature review and research in differential equations and integral equations - Suitable for use as a textbook for a two semester graduate level course for M.S. and Ph.D. students in Mathematics and Applied Mathematics