Random Matrix Theory, Interacting Particle Systems and Integrable Systems
Title | Random Matrix Theory, Interacting Particle Systems and Integrable Systems PDF eBook |
Author | Percy Deift |
Publisher | Cambridge University Press |
Pages | 539 |
Release | 2014-12-15 |
Genre | Language Arts & Disciplines |
ISBN | 1107079926 |
This volume includes review articles and research contributions on long-standing questions on universalities of Wigner matrices and beta-ensembles.
Integrable Systems and Random Matrices
Title | Integrable Systems and Random Matrices PDF eBook |
Author | Jinho Baik |
Publisher | American Mathematical Soc. |
Pages | 448 |
Release | 2008 |
Genre | Mathematics |
ISBN | 0821842404 |
This volume contains the proceedings of a conference held at the Courant Institute in 2006 to celebrate the 60th birthday of Percy A. Deift. The program reflected the wide-ranging contributions of Professor Deift to analysis with emphasis on recent developments in Random Matrix Theory and integrable systems. The articles in this volume present a broad view on the state of the art in these fields. Topics on random matrices include the distributions and stochastic processes associated with local eigenvalue statistics, as well as their appearance in combinatorial models such as TASEP, last passage percolation and tilings. The contributions in integrable systems mostly deal with focusing NLS, the Camassa-Holm equation and the Toda lattice. A number of papers are devoted to techniques that are used in both fields. These techniques are related to orthogonal polynomials, operator determinants, special functions, Riemann-Hilbert problems, direct and inverse spectral theory. Of special interest is the article of Percy Deift in which he discusses some open problems of Random Matrix Theory and the theory of integrable systems.
Combinatorics and Random Matrix Theory
Title | Combinatorics and Random Matrix Theory PDF eBook |
Author | Jinho Baik |
Publisher | American Mathematical Soc. |
Pages | 478 |
Release | 2016-06-22 |
Genre | Mathematics |
ISBN | 0821848410 |
Over the last fifteen years a variety of problems in combinatorics have been solved in terms of random matrix theory. More precisely, the situation is as follows: the problems at hand are probabilistic in nature and, in an appropriate scaling limit, it turns out that certain key quantities associated with these problems behave statistically like the eigenvalues of a (large) random matrix. Said differently, random matrix theory provides a “stochastic special function theory” for a broad and growing class of problems in combinatorics. The goal of this book is to analyze in detail two key examples of this phenomenon, viz., Ulam's problem for increasing subsequences of random permutations and domino tilings of the Aztec diamond. Other examples are also described along the way, but in less detail. Techniques from many different areas in mathematics are needed to analyze these problems. These areas include combinatorics, probability theory, functional analysis, complex analysis, and the theory of integrable systems. The book is self-contained, and along the way we develop enough of the theory we need from each area that a general reader with, say, two or three years experience in graduate school can learn the subject directly from the text.
Random Matrix Theory
Title | Random Matrix Theory PDF eBook |
Author | Percy Deift |
Publisher | American Mathematical Soc. |
Pages | 236 |
Release | 2009-01-01 |
Genre | Mathematics |
ISBN | 0821883577 |
"This book features a unified derivation of the mathematical theory of the three classical types of invariant random matrix ensembles-orthogonal, unitary, and symplectic. The authors follow the approach of Tracy and Widom, but the exposition here contains a substantial amount of additional material, in particular, facts from functional analysis and the theory of Pfaffians. The main result in the book is a proof of universality for orthogonal and symplectic ensembles corresponding to generalized Gaussian type weights following the authors' prior work. New, quantitative error estimates are derived." --Book Jacket.
Log-Gases and Random Matrices (LMS-34)
Title | Log-Gases and Random Matrices (LMS-34) PDF eBook |
Author | Peter J. Forrester |
Publisher | Princeton University Press |
Pages | 808 |
Release | 2010-07-01 |
Genre | Mathematics |
ISBN | 1400835410 |
Random matrix theory, both as an application and as a theory, has evolved rapidly over the past fifteen years. Log-Gases and Random Matrices gives a comprehensive account of these developments, emphasizing log-gases as a physical picture and heuristic, as well as covering topics such as beta ensembles and Jack polynomials. Peter Forrester presents an encyclopedic development of log-gases and random matrices viewed as examples of integrable or exactly solvable systems. Forrester develops not only the application and theory of Gaussian and circular ensembles of classical random matrix theory, but also of the Laguerre and Jacobi ensembles, and their beta extensions. Prominence is given to the computation of a multitude of Jacobians; determinantal point processes and orthogonal polynomials of one variable; the Selberg integral, Jack polynomials, and generalized hypergeometric functions; Painlevé transcendents; macroscopic electrostatistics and asymptotic formulas; nonintersecting paths and models in statistical mechanics; and applications of random matrix theory. This is the first textbook development of both nonsymmetric and symmetric Jack polynomial theory, as well as the connection between Selberg integral theory and beta ensembles. The author provides hundreds of guided exercises and linked topics, making Log-Gases and Random Matrices an indispensable reference work, as well as a learning resource for all students and researchers in the field.
Algebraic and Geometric Aspects of Integrable Systems and Random Matrices
Title | Algebraic and Geometric Aspects of Integrable Systems and Random Matrices PDF eBook |
Author | Anton Dzhamay |
Publisher | American Mathematical Soc. |
Pages | 363 |
Release | 2013-06-26 |
Genre | Mathematics |
ISBN | 0821887475 |
This volume contains the proceedings of the AMS Special Session on Algebraic and Geometric Aspects of Integrable Systems and Random Matrices, held from January 6-7, 2012, in Boston, MA. The very wide range of topics represented in this volume illustrates
Random Matrices, Random Processes and Integrable Systems
Title | Random Matrices, Random Processes and Integrable Systems PDF eBook |
Author | John Harnad |
Publisher | Springer Science & Business Media |
Pages | 536 |
Release | 2011-05-06 |
Genre | Science |
ISBN | 1441995145 |
This book explores the remarkable connections between two domains that, a priori, seem unrelated: Random matrices (together with associated random processes) and integrable systems. The relations between random matrix models and the theory of classical integrable systems have long been studied. These appear mainly in the deformation theory, when parameters characterizing the measures or the domain of localization of the eigenvalues are varied. The resulting differential equations determining the partition function and correlation functions are, remarkably, of the same type as certain equations appearing in the theory of integrable systems. They may be analyzed effectively through methods based upon the Riemann-Hilbert problem of analytic function theory and by related approaches to the study of nonlinear asymptotics in the large N limit. Associated with studies of matrix models are certain stochastic processes, the "Dyson processes", and their continuum diffusion limits, which govern the spectrum in random matrix ensembles, and may also be studied by related methods. Random Matrices, Random Processes and Integrable Systems provides an in-depth examination of random matrices with applications over a vast variety of domains, including multivariate statistics, random growth models, and many others. Leaders in the field apply the theory of integrable systems to the solution of fundamental problems in random systems and processes using an interdisciplinary approach that sheds new light on a dynamic topic of current research.