Integrability, Quantization, and Geometry: I. Integrable Systems

Integrability, Quantization, and Geometry: I. Integrable Systems
Title Integrability, Quantization, and Geometry: I. Integrable Systems PDF eBook
Author Sergey Novikov
Publisher American Mathematical Soc.
Pages 516
Release 2021-04-12
Genre Education
ISBN 1470455919

Download Integrability, Quantization, and Geometry: I. Integrable Systems Book in PDF, Epub and Kindle

This book is a collection of articles written in memory of Boris Dubrovin (1950–2019). The authors express their admiration for his remarkable personality and for the contributions he made to mathematical physics. For many of the authors, Dubrovin was a friend, colleague, inspiring mentor, and teacher. The contributions to this collection of papers are split into two parts: “Integrable Systems” and “Quantum Theories and Algebraic Geometry”, reflecting the areas of main scientific interests of Dubrovin. Chronologically, these interests may be divided into several parts: integrable systems, integrable systems of hydrodynamic type, WDVV equations (Frobenius manifolds), isomonodromy equations (flat connections), and quantum cohomology. The articles included in the first part are more or less directly devoted to these areas (primarily with the first three listed above). The second part contains articles on quantum theories and algebraic geometry and is less directly connected with Dubrovin's early interests.

Integrability and Quantization

Integrability and Quantization
Title Integrability and Quantization PDF eBook
Author M. Asorey
Publisher
Pages 306
Release 1990
Genre Field theory (Physics)
ISBN

Download Integrability and Quantization Book in PDF, Epub and Kindle

Sixteenth International Congress on Mathematical Physics

Sixteenth International Congress on Mathematical Physics
Title Sixteenth International Congress on Mathematical Physics PDF eBook
Author Pavel Exner
Publisher World Scientific
Pages 709
Release 2010
Genre Science
ISBN 981430462X

Download Sixteenth International Congress on Mathematical Physics Book in PDF, Epub and Kindle

The International Congress on Mathematical Physics is the flagship conference in this exciting field. Convening every three years, it gives a survey on the progress achieved in all branches of mathematical physics. It also provides a superb platform to discuss challenges and new ideas. The present volume collects material from the XVIth ICMP which was held in Prague, August 2009, and features most of the plenary lectures and invited lectures in topical sessions as well as information on other parts of the congress program. This volume provides a broad coverage of the field of mathematical physics, from dominantly mathematical subjects to particle physics, condensed matter, and application of mathematical physics methods in various areas such as astrophysics and ecology, amongst others.

Integrability, Quantization, and Geometry: II. Quantum Theories and Algebraic Geometry

Integrability, Quantization, and Geometry: II. Quantum Theories and Algebraic Geometry
Title Integrability, Quantization, and Geometry: II. Quantum Theories and Algebraic Geometry PDF eBook
Author Sergey Novikov
Publisher American Mathematical Soc.
Pages 480
Release 2021-04-12
Genre Education
ISBN 1470455927

Download Integrability, Quantization, and Geometry: II. Quantum Theories and Algebraic Geometry Book in PDF, Epub and Kindle

This book is a collection of articles written in memory of Boris Dubrovin (1950–2019). The authors express their admiration for his remarkable personality and for the contributions he made to mathematical physics. For many of the authors, Dubrovin was a friend, colleague, inspiring mentor, and teacher. The contributions to this collection of papers are split into two parts: “Integrable Systems” and “Quantum Theories and Algebraic Geometry”, reflecting the areas of main scientific interests of Dubrovin. Chronologically, these interests may be divided into several parts: integrable systems, integrable systems of hydrodynamic type, WDVV equations (Frobenius manifolds), isomonodromy equations (flat connections), and quantum cohomology. The articles included in the first part are more or less directly devoted to these areas (primarily with the first three listed above). The second part contains articles on quantum theories and algebraic geometry and is less directly connected with Dubrovin's early interests.

Mathematical Aspects Of Weyl Quantization And Phase

Mathematical Aspects Of Weyl Quantization And Phase
Title Mathematical Aspects Of Weyl Quantization And Phase PDF eBook
Author Daniel Abrom Dubin
Publisher World Scientific
Pages 562
Release 2000-06-12
Genre Science
ISBN 9814494615

Download Mathematical Aspects Of Weyl Quantization And Phase Book in PDF, Epub and Kindle

This book analyzes in considerable generality the quantization-dequantization integral transform scheme of Weyl and Wigner, and considers several phase operator theories. It features: a thorough treatment of quantization in polar coordinates; dequantization by a new method of “motes”; a discussion of Moyal algebras; modifications of the transform method to accommodate operator orderings; a rigorous discussion of the Dicke laser model for one mode, fully quantum, in the thermodynamic limit; analysis of quantum phase theories based on the Toeplitz operator, the coherent state operator, the quantized phase space angle, and a sequence of finite rank operators.

Global Aspects of Classical Integrable Systems

Global Aspects of Classical Integrable Systems
Title Global Aspects of Classical Integrable Systems PDF eBook
Author Richard H. Cushman
Publisher Birkhäuser
Pages 493
Release 2015-06-01
Genre Science
ISBN 3034809182

Download Global Aspects of Classical Integrable Systems Book in PDF, Epub and Kindle

This book gives a uniquely complete description of the geometry of the energy momentum mapping of five classical integrable systems: the 2-dimensional harmonic oscillator, the geodesic flow on the 3-sphere, the Euler top, the spherical pendulum and the Lagrange top. It presents for the first time in book form a general theory of symmetry reduction which allows one to reduce the symmetries in the spherical pendulum and the Lagrange top. Also the monodromy obstruction to the existence of global action angle coordinates is calculated for the spherical pendulum and the Lagrange top. The book addresses professional mathematicians and graduate students and can be used as a textbook on advanced classical mechanics or global analysis.

Lectures on the Geometry of Quantization

Lectures on the Geometry of Quantization
Title Lectures on the Geometry of Quantization PDF eBook
Author Sean Bates
Publisher American Mathematical Soc.
Pages 150
Release 1997
Genre Mathematics
ISBN 9780821807989

Download Lectures on the Geometry of Quantization Book in PDF, Epub and Kindle

These notes are based on a course entitled ``Symplectic Geometry and Geometric Quantization'' taught by Alan Weinstein at the University of California, Berkeley (fall 1992) and at the Centre Emile Borel (spring 1994). The only prerequisite for the course needed is a knowledge of the basic notions from the theory of differentiable manifolds (differential forms, vector fields, transversality, etc.). The aim is to give students an introduction to the ideas of microlocal analysis and the related symplectic geometry, with an emphasis on the role these ideas play in formalizing the transition between the mathematics of classical dynamics (hamiltonian flows on symplectic manifolds) and quantum mechanics (unitary flows on Hilbert spaces). These notes are meant to function as a guide to the literature. The authors refer to other sources for many details that are omitted and can be bypassed on a first reading.