Inorganic Scintillators for Detector Systems
Title | Inorganic Scintillators for Detector Systems PDF eBook |
Author | Paul Lecoq |
Publisher | Springer |
Pages | 251 |
Release | 2006-03-09 |
Genre | Science |
ISBN | 9783540277668 |
The development of new scintillators as components of modern detector systems is increasingly defined by the end user's needs. This book provides an introduction to this emerging topic at the interface of physics and materials sciences, with emphasis on bulk inorganic scintillators. After surveying the end user's needs in a vast range of applications, ranging from astrophysics to industrial R and D, the authors move on to review scintillating mechanisms and the properties of the most important materials used. A chapter on crystal engineering and examples of recent developments in the field of high-energy physics and medical imaging introduce the reader to the practical aspects. This book will benefit researchers and scientists working in academic and industrial R and D related to the development of scintillators.
Inorganic Scintillators for Detector Systems
Title | Inorganic Scintillators for Detector Systems PDF eBook |
Author | Paul Lecoq |
Publisher | Springer |
Pages | 420 |
Release | 2016-11-25 |
Genre | Science |
ISBN | 3319455222 |
This second edition features new chapters highlighting advances in our understanding of the behavior and properties of scintillators, and the discovery of new families of materials with light yield and excellent energy resolution very close to the theoretical limit. The book focuses on the discovery of next-generation scintillation materials and on a deeper understanding of fundamental processes. Such novel materials with high light yield as well as significant advances in crystal engineering offer exciting new perspectives. Most promising is the application of scintillators for precise time tagging of events, at the level of 100 ps or higher, heralding a new era in medical applications and particle physics. Since the discovery of the Higgs Boson with a clear signature in the lead tungstate scintillating blocks of the CMS Electromagnetic Calorimeter detector, the current trend in particle physics is toward very high luminosity colliders, in which timing performance will ultimately be essential to mitigating pile-up problems. New and extremely fast light production mechanisms based on Hot-Intraband-Luminescence as well as quantum confinement are exploited for this purpose. Breakthroughs such as crystal engineering by means of co-doping procedures and selection of cations with small nuclear fragmentation cross-sections will also pave the way for the development of more advanced and radiation-hard materials. Similar innovations are expected in medical imaging, nuclear physics ecology, homeland security, space instrumentation and industrial applications. This second edition also reviews modern trends in our understanding and the engineering of scintillation materials. Readers will find new and updated references and information, as well as new concepts and inspirations to implement in their own research and engineering endeavors.
Particle Physics Reference Library
Title | Particle Physics Reference Library PDF eBook |
Author | Christian W. Fabjan |
Publisher | Springer Nature |
Pages | 1083 |
Release | 2020 |
Genre | Heavy ions |
ISBN | 3030353184 |
This second open access volume of the handbook series deals with detectors, large experimental facilities and data handling, both for accelerator and non-accelerator based experiments. It also covers applications in medicine and life sciences. A joint CERN-Springer initiative, the "Particle Physics Reference Library" provides revised and updated contributions based on previously published material in the well-known Landolt-Boernstein series on particle physics, accelerators and detectors (volumes 21A, B1,B2,C), which took stock of the field approximately one decade ago. Central to this new initiative is publication under full open access
Inorganic Scintillators for Detector Systems
Title | Inorganic Scintillators for Detector Systems PDF eBook |
Author | Paul Lecoq |
Publisher | Springer |
Pages | 0 |
Release | 2010-02-12 |
Genre | Science |
ISBN | 9783642066153 |
The development of new scintillators as components of modern detector systems is increasingly defined by the end user's needs. This book provides an introduction to this emerging topic at the interface of physics and materials sciences, with emphasis on bulk inorganic scintillators. After surveying the end user's needs in a vast range of applications, ranging from astrophysics to industrial R and D, the authors move on to review scintillating mechanisms and the properties of the most important materials used. A chapter on crystal engineering and examples of recent developments in the field of high-energy physics and medical imaging introduce the reader to the practical aspects. This book will benefit researchers and scientists working in academic and industrial R and D related to the development of scintillators.
Handbook of Particle Detection and Imaging
Title | Handbook of Particle Detection and Imaging PDF eBook |
Author | Claus Grupen |
Publisher | Springer Science & Business Media |
Pages | 1251 |
Release | 2012-01-08 |
Genre | Science |
ISBN | 3642132715 |
The handbook centers on detection techniques in the field of particle physics, medical imaging and related subjects. It is structured into three parts. The first one is dealing with basic ideas of particle detectors, followed by applications of these devices in high energy physics and other fields. In the last part the large field of medical imaging using similar detection techniques is described. The different chapters of the book are written by world experts in their field. Clear instructions on the detection techniques and principles in terms of relevant operation parameters for scientists and graduate students are given.Detailed tables and diagrams will make this a very useful handbook for the application of these techniques in many different fields like physics, medicine, biology and other areas of natural science.
The Theory and Practice of Scintillation Counting
Title | The Theory and Practice of Scintillation Counting PDF eBook |
Author | J. B. Birks |
Publisher | Elsevier |
Pages | 685 |
Release | 2013-10-22 |
Genre | Technology & Engineering |
ISBN | 1483156060 |
The Theory and Practice of Scintillation Counting is a comprehensive account of the theory and practice of scintillation counting. This text covers the study of the scintillation process, which is concerned with the interactions of radiation and matter; the design of the scintillation counter; and the wide range of applications of scintillation counters in pure and applied science. The book is easy to read despite the complex nature of the subject it attempts to discuss. It is organized such that the first five chapters illustrate the fundamental concepts of scintillation counting. Chapters 6 to 10 detail the properties and applications of organic scintillators, while the next four chapters discuss inorganic scintillators. The last two chapters provide a review of some outstanding problems and a postscript. Nuclear physicists, radiation technologists, and postgraduate students of nuclear physics will find the book a good reference material.
Plastic Scintillators
Title | Plastic Scintillators PDF eBook |
Author | Matthieu Hamel |
Publisher | Springer Nature |
Pages | 647 |
Release | 2021-07-10 |
Genre | Science |
ISBN | 3030734889 |
This book introduces the physics and chemistry of plastic scintillators (fluorescent polymers) that are able to emit light when exposed to ionizing radiation, discussing their chemical modification in the early 1950s and 1960s, as well as the renewed upsurge in interest in the 21st century. The book presents contributions from various researchers on broad aspects of plastic scintillators, from physics, chemistry, materials science and applications, covering topics such as the chemical nature of the polymer and/or the fluorophores, modification of the photophysical properties (decay time, emission wavelength) and loading of additives to make the material more sensitive to, e.g., fast neutrons, thermal neutrons or gamma rays. It also describes the benefits of recent technological advances for plastic scintillators, such as nanomaterials and quantum dots, which allow features that were previously not achievable with regular organic molecules or organometallics.