Improved Earth System Prediction Using Large Ensembles and Machine Learning

Improved Earth System Prediction Using Large Ensembles and Machine Learning
Title Improved Earth System Prediction Using Large Ensembles and Machine Learning PDF eBook
Author William Chapman
Publisher
Pages 272
Release 2021
Genre
ISBN

Download Improved Earth System Prediction Using Large Ensembles and Machine Learning Book in PDF, Epub and Kindle

The purpose of this thesis is to examine and advance North American weather predictability from weather to subseasonal time-scales. Specifically, it focuses on 1) developing machine learning/deep learning methods and models to improve predictability through numerical weather prediction (NWP) post-processing on weather time-scales (0-7 days) and 2) examining the physical mechanisms which govern the evolution of the predictable components and noise components of teleconnection modes on subseasonal time-scales (7 days-1 month). NWP deficiencies (e.g., sub-grid parameterization approximations), nonlinear error growth associated with the chaotic nature of the atmosphere, and initial condition uncertainty lead initial small forecast errors to eventually result in weather predictions which are as skillful as random forecasts. A portion of these forecast errors are inherent to the NWP models alone, systematic biases. The first two chapters develop cutting-edge vision-based deep-learning algorithms to advance the current state-of-the-art NWP post-processing and correct these systematic biases. Using dynamic forecasts of North Pacific integrated vapor transport (IVT) as a test case, we develop post-processing systems which are spatially aware, readily encode non-linear predictor interaction, easily ingest ancillary weather variables, and have state of the art training methods that systematically prevent model overfitting. Further, we outline a framework to quantify uncertainty in single-point (deterministic) forecasts using neural networks. The uncertainty is shown to be probabilistically rigorous, leading to calibrated probabilistic forecasts which outperform or compete with calibrated dynamic NWP ensemble systems for IVT under atmospheric river conditions. The second half of this thesis shifts focus to subseasonal time scales and examines predictability in the Pacific North American (PNA) sector in boreal winter. Particularly, it investigates the physical mechanisms involved in the intraseasonal modulation of atmospheric Signal-to-Noise (SN), and how it is affected by slowly varying climate modes (ENSO and MJO). These mechanisms are further explored using a fully-coupled hindcast of the 20th century, showing that the increased SN leads to high model forecast skill at subseasonal timescales in particular forecast windows of opportunity. Additionally, we reveal the MJO as the largest growing mode of tropical forecast uncertainty which directly influences PNA forecast certainty.

Next Generation Earth System Prediction

Next Generation Earth System Prediction
Title Next Generation Earth System Prediction PDF eBook
Author National Academies of Sciences, Engineering, and Medicine
Publisher National Academies Press
Pages 351
Release 2016-08-22
Genre Science
ISBN 0309388805

Download Next Generation Earth System Prediction Book in PDF, Epub and Kindle

As the nation's economic activities, security concerns, and stewardship of natural resources become increasingly complex and globally interrelated, they become ever more sensitive to adverse impacts from weather, climate, and other natural phenomena. For several decades, forecasts with lead times of a few days for weather and other environmental phenomena have yielded valuable information to improve decision-making across all sectors of society. Developing the capability to forecast environmental conditions and disruptive events several weeks and months in advance could dramatically increase the value and benefit of environmental predictions, saving lives, protecting property, increasing economic vitality, protecting the environment, and informing policy choices. Over the past decade, the ability to forecast weather and climate conditions on subseasonal to seasonal (S2S) timescales, i.e., two to fifty-two weeks in advance, has improved substantially. Although significant progress has been made, much work remains to make S2S predictions skillful enough, as well as optimally tailored and communicated, to enable widespread use. Next Generation Earth System Predictions presents a ten-year U.S. research agenda that increases the nation's S2S research and modeling capability, advances S2S forecasting, and aids in decision making at medium and extended lead times.

Sub-seasonal to Seasonal Prediction

Sub-seasonal to Seasonal Prediction
Title Sub-seasonal to Seasonal Prediction PDF eBook
Author Andrew Robertson
Publisher Elsevier
Pages 588
Release 2018-10-19
Genre Science
ISBN 012811715X

Download Sub-seasonal to Seasonal Prediction Book in PDF, Epub and Kindle

The Gap Between Weather and Climate Forecasting: Sub-seasonal to Seasonal Prediction is an ideal reference for researchers and practitioners across the range of disciplines involved in the science, modeling, forecasting and application of this new frontier in sub-seasonal to seasonal (S2S) prediction. It provides an accessible, yet rigorous, introduction to the scientific principles and sources of predictability through the unique challenges of numerical simulation and forecasting with state-of-science modeling codes and supercomputers. Additional coverage includes the prospects for developing applications to trigger early action decisions to lessen weather catastrophes, minimize costly damage, and optimize operator decisions. The book consists of a set of contributed chapters solicited from experts and leaders in the fields of S2S predictability science, numerical modeling, operational forecasting, and developing application sectors. The introduction and conclusion, written by the co-editors, provides historical perspective, unique synthesis and prospects, and emerging opportunities in this exciting, complex and interdisciplinary field. Contains contributed chapters from leaders and experts in sub-seasonal to seasonal science, forecasting and applications Provides a one-stop shop for graduate students, academic and applied researchers, and practitioners in an emerging and interdisciplinary field Offers a synthesis of the state of S2S science through the use of concrete examples, enabling potential users of S2S forecasts to quickly grasp the potential for application in their own decision-making Includes a broad set of topics, illustrated with graphic examples, that highlight interdisciplinary linkages

Clouds and Climate

Clouds and Climate
Title Clouds and Climate PDF eBook
Author A. Pier Siebesma
Publisher Cambridge University Press
Pages 421
Release 2020-08-20
Genre Mathematics
ISBN 1107061075

Download Clouds and Climate Book in PDF, Epub and Kindle

Comprehensive overview of research on clouds and their role in our present and future climate, for advanced students and researchers.

Artificial Intelligence in Earth Science

Artificial Intelligence in Earth Science
Title Artificial Intelligence in Earth Science PDF eBook
Author Ziheng Sun
Publisher Elsevier
Pages 430
Release 2023-04-27
Genre Science
ISBN 0323972160

Download Artificial Intelligence in Earth Science Book in PDF, Epub and Kindle

Artificial Intelligence in Earth Science: Best Practices and Fundamental Challenges provides a comprehensive, step-by-step guide to AI workflows for solving problems in Earth Science. The book focuses on the most challenging problems in applying AI in Earth system sciences, such as training data preparation, model selection, hyperparameter tuning, model structure optimization, spatiotemporal generalization, transforming model results into products, and explaining trained models. In addition, it provides full-stack workflow tutorials to help walk readers through the whole process, regardless of previous AI experience. The book tackles the complexity of Earth system problems in AI engineering, fully guiding geoscientists who are planning to implement AI in their daily work. Provides practical, step-by-step guides for Earth Scientists who are interested in implementing AI techniques in their work Features case studies to show real-world examples of techniques described in the book Includes additional elements to help readers who are new to AI, including end-of-chapter, key concept bulleted lists that concisely cover key concepts in the chapter

Seamless Prediction of the Earth System

Seamless Prediction of the Earth System
Title Seamless Prediction of the Earth System PDF eBook
Author Gilbert Brunet
Publisher
Pages 471
Release 2015
Genre Climatic changes
ISBN 9789263111562

Download Seamless Prediction of the Earth System Book in PDF, Epub and Kindle

"This book collects together White Papers that have been written to describe the state of the science and to discuss the major challenges for making further advances. The authors of each chapter have attempted to draw together key aspects of the science that was presented at WWOSC-2014. The overarching theme of this book and of WWOSC-2014 is 'Seamless Prediction of the Earth System: from minutes to months'. The book is structured with chapters that address topics regarding: Observations and Data Assimilation; Predictability and Processes; Numerical Prediction of the Earth System; Weather-related Hazards and Impacts. This book marks a point in time and the knowledge that has been accumulating on weather science. It aims to point the way to future developments"--Preface.

Earth System Modeling, Data Assimilation and Predictability

Earth System Modeling, Data Assimilation and Predictability
Title Earth System Modeling, Data Assimilation and Predictability PDF eBook
Author Eugenia Kalnay
Publisher Cambridge University Press
Pages 0
Release 2024-07-31
Genre Science
ISBN 9781107009004

Download Earth System Modeling, Data Assimilation and Predictability Book in PDF, Epub and Kindle