Ill-Posed Problems with A Priori Information
Title | Ill-Posed Problems with A Priori Information PDF eBook |
Author | V. V. Vasin |
Publisher | Walter de Gruyter |
Pages | 268 |
Release | 2013-02-18 |
Genre | Mathematics |
ISBN | 3110900114 |
The Inverse and Ill-Posed Problems Series is a series of monographs publishing postgraduate level information on inverse and ill-posed problems for an international readership of professional scientists and researchers. The series aims to publish works which involve both theory and applications in, e.g., physics, medicine, geophysics, acoustics, electrodynamics, tomography, and ecology.
Theory of Linear Ill-Posed Problems and its Applications
Title | Theory of Linear Ill-Posed Problems and its Applications PDF eBook |
Author | Valentin K. Ivanov |
Publisher | Walter de Gruyter |
Pages | 296 |
Release | 2013-02-18 |
Genre | Mathematics |
ISBN | 3110944820 |
This monograph is a revised and extended version of the Russian edition from 1978. It includes the general theory of linear ill-posed problems concerning e. g. the structure of sets of uniform regularization, the theory of error estimation, and the optimality method. As a distinguishing feature the book considers ill-posed problems not only in Hilbert but also in Banach spaces. It is natural that since the appearance of the first edition considerable progress has been made in the theory of inverse and ill-posed problems as wall as in ist applications. To reflect these accomplishments the authors included additional material e. g. comments to each chapter and a list of monographs with annotations.
Ill-Posed Problems: Theory and Applications
Title | Ill-Posed Problems: Theory and Applications PDF eBook |
Author | A. Bakushinsky |
Publisher | Springer Science & Business Media |
Pages | 268 |
Release | 2012-12-06 |
Genre | Mathematics |
ISBN | 9401110263 |
Recent years have been characterized by the increasing amountofpublications in the field ofso-called ill-posed problems. This is easilyunderstandable because we observe the rapid progress of a relatively young branch ofmathematics, ofwhich the first results date back to about 30 years ago. By now, impressive results have been achieved both in the theory ofsolving ill-posed problems and in the applicationsofalgorithms using modem computers. To mention just one field, one can name the computer tomography which could not possibly have been developed without modem tools for solving ill-posed problems. When writing this book, the authors tried to define the place and role of ill posed problems in modem mathematics. In a few words, we define the theory of ill-posed problems as the theory of approximating functions with approximately given arguments in functional spaces. The difference between well-posed and ill posed problems is concerned with the fact that the latter are associated with discontinuous functions. This approach is followed by the authors throughout the whole book. We hope that the theoretical results will be of interest to researchers working in approximation theory and functional analysis. As for particular algorithms for solving ill-posed problems, the authors paid general attention to the principles ofconstructing such algorithms as the methods for approximating discontinuous functions with approximately specified arguments. In this way it proved possible to define the limits of applicability of regularization techniques.
Magnetotellurics in the Context of the Theory of Ill-posed Problems
Title | Magnetotellurics in the Context of the Theory of Ill-posed Problems PDF eBook |
Author | Mark Naumovich BerdichevskiÄ |
Publisher | SEG Books |
Pages | 233 |
Release | 2002 |
Genre | Science |
ISBN | 1560801069 |
This volume serves as an introduction to modern magnetotellurics originating with the pioneering work of Tikhonov and Cagniard. It presents a comprehensive summary of theoretical and methodological aspects of magnetotellurics. It provides a bridge between textbooks on electrical prospecting and numerous papers on magnetotelluric methods scattered among various geophysical journals and collections. The book has been written in the terms of the theory of ill-posed problems and contains a special chapter encouraging readers to master the elements of this theory that defines the philosophy of the physical experiment. The book thus offers the connected and consistent account of the principles of magnetotellurics from that single viewpoint. The book also brings together developments from many sources and involves some little-known results developed in Russia in Tikhonov's magnetotellurics school. Of particular interest are concluding chapters of the book that demonstrate the potential of magnetotellurics in oil and gas surveys, including discovery of the Urengoy gas field in Western Siberia, one of the largest gas fields in the world. This potential also is revealed in studies of the earth's crust and upper mantle.
Ill-Posed Problems in Natural Sciences
Title | Ill-Posed Problems in Natural Sciences PDF eBook |
Author | Andrei N. Tikhonov |
Publisher | Walter de Gruyter GmbH & Co KG |
Pages | 608 |
Release | 2020-05-18 |
Genre | Mathematics |
ISBN | 3112313933 |
No detailed description available for "Ill-Posed Problems in Natural Sciences".
Iterative Methods for Ill-posed Problems
Title | Iterative Methods for Ill-posed Problems PDF eBook |
Author | Anatoly B. Bakushinsky |
Publisher | Walter de Gruyter |
Pages | 153 |
Release | 2011 |
Genre | Mathematics |
ISBN | 3110250640 |
Ill-posed problems are encountered in countless areas of real world science and technology. A variety of processes in science and engineering is commonly modeled by algebraic, differential, integral and other equations. In a more difficult case, it can be systems of equations combined with the associated initial and boundary conditions. Frequently, the study of applied optimization problems is also reduced to solving the corresponding equations. These equations, encountered both in theoretical and applied areas, may naturally be classified as operator equations. The current textbook will focus on iterative methods for operator equations in Hilbert spaces.
Numerical Methods for the Solution of Ill-Posed Problems
Title | Numerical Methods for the Solution of Ill-Posed Problems PDF eBook |
Author | A.N. Tikhonov |
Publisher | Springer Science & Business Media |
Pages | 257 |
Release | 2013-03-09 |
Genre | Mathematics |
ISBN | 940158480X |
Many problems in science, technology and engineering are posed in the form of operator equations of the first kind, with the operator and RHS approximately known. But such problems often turn out to be ill-posed, having no solution, or a non-unique solution, and/or an unstable solution. Non-existence and non-uniqueness can usually be overcome by settling for `generalised' solutions, leading to the need to develop regularising algorithms. The theory of ill-posed problems has advanced greatly since A. N. Tikhonov laid its foundations, the Russian original of this book (1990) rapidly becoming a classical monograph on the topic. The present edition has been completely updated to consider linear ill-posed problems with or without a priori constraints (non-negativity, monotonicity, convexity, etc.). Besides the theoretical material, the book also contains a FORTRAN program library. Audience: Postgraduate students of physics, mathematics, chemistry, economics, engineering. Engineers and scientists interested in data processing and the theory of ill-posed problems.