How Can Secretomics Help Unravel the Secrets of Plant-Microbe Interactions?

How Can Secretomics Help Unravel the Secrets of Plant-Microbe Interactions?
Title How Can Secretomics Help Unravel the Secrets of Plant-Microbe Interactions? PDF eBook
Author Delphine Vincent
Publisher Frontiers Media SA
Pages 190
Release 2017-01-27
Genre
ISBN 2889450872

Download How Can Secretomics Help Unravel the Secrets of Plant-Microbe Interactions? Book in PDF, Epub and Kindle

Secretomics describes the global study of proteins that are secreted by a cell, a tissue or an organism, and has recently emerged as a field for which interest is rapidly growing. The term secretome was first coined at the turn of the millennium and was defined to comprise not only the native secreted proteins released into the extracellular space but also the components of machineries for protein secretion. Two secretory pathways have been described in fungi: i) the canonical pathway through which proteins bearing a N-terminal peptide signal can traverse the endoplasmic reticulum and Golgi apparatus, and ii) the unconventional pathway for proteins lacking a peptide signal. Protein secretion systems are more diverse in bacteria, in which types I to VII pathways as well as Sec or two-arginine (Tat) pathways have been described. In oomycete species, effectors are mostly small proteins containing an N-terminal signal peptide for secretion and additional C-terminal motifs such as RXLRs and CRNs for host targeting. It has recently been shown that oomycetes exploit non-conventional secretion mechanisms to transfer certain proteins to the extracellular environment. Other non-classical secretion systems involved in plant-fugal interaction include extracellular vesicles (EVs, Figure 1 from Samuel et al 2016 Front. Plant Sci. 6:766.). The versatility of oomycetes, fungi and bacteria allows them to associate with plants in many ways depending on whether they are biotroph, hemibiotroph, necrotroph, or saprotroph. When interacting with a live organism, a microbe will invade its plant host and manipulate its metabolisms either detrimentally if it is a pathogen or beneficially if it is a symbiote. Deciphering secretomes became a crucial biological question when an increasing body of evidence indicated that secreted proteins were the main effectors initiating interactions, whether of pathogenic or symbiotic nature, between microbes and their plant hosts. Secretomics may help to contribute to the global food security and to the ecosystem sustainability by addressing issues in i) plant biosecurity, with the design of crops resistant to pathogens, ii) crop yield enhancement, for example driven by arbuscular mycorrhizal fungi helping plant hosts utilise phosphate from the soil hence increase biomass, and iii) renewable energy, through the identification of microbial enzymes able to augment the bio-conversion of plant lignocellulosic materials for the production of second generation biofuels that do not compete with food production. To this day, more than a hundred secretomics studies have been published on all taxa and the number of publications is increasing steadily. Secretory pathways have been described in various species of microbes and/or their plant hosts, yet the functions of proteins secreted outside the cell remain to be fully grasped. This Research Topic aims at discussing how secretomics can assist the scientists in gaining knowledge about the mechanisms underpinning plant-microbe interactions.

How Can Secretomics Help Unravel the Secrets of Plant-Microbe Interactions?.

How Can Secretomics Help Unravel the Secrets of Plant-Microbe Interactions?.
Title How Can Secretomics Help Unravel the Secrets of Plant-Microbe Interactions?. PDF eBook
Author
Publisher
Pages 0
Release 2017
Genre
ISBN

Download How Can Secretomics Help Unravel the Secrets of Plant-Microbe Interactions?. Book in PDF, Epub and Kindle

Secretomics describes the global study of proteins that are secreted by a cell, a tissue or an organism, and has recently emerged as a field for which interest is rapidly growing. The term secretome was first coined at the turn of the millennium and was defined to comprise not only the native secreted proteins released into the extracellular space but also the components of machineries for protein secretion. Two secretory pathways have been described in fungi: i) the canonical pathway through which proteins bearing a N-terminal peptide signal can traverse the endoplasmic reticulum and Golgi apparatus, and ii) the unconventional pathway for proteins lacking a peptide signal. Protein secretion systems are more diverse in bacteria, in which types I to VII pathways as well as Sec or two-arginine (Tat) pathways have been described. In oomycete species, effectors are mostly small proteins containing an N-terminal signal peptide for secretion and additional C-terminal motifs such as RXLRs and CRNs for host targeting. It has recently been shown that oomycetes exploit non-conventional secretion mechanisms to transfer certain proteins to the extracellular environment. Other non-classical secretion systems involved in plant-fugal interaction include extracellular vesicles (EVs, Figure 1 from Samuel et al 2016 Front. Plant Sci. 6:766.). The versatility of oomycetes, fungi and bacteria allows them to associate with plants in many ways depending on whether they are biotroph, hemibiotroph, necrotroph, or saprotroph. When interacting with a live organism, a microbe will invade its plant host and manipulate its metabolisms either detrimentally if it is a pathogen or beneficially if it is a symbiote. Deciphering secretomes became a crucial biological question when an increasing body of evidence indicated that secreted proteins were the main effectors initiating interactions, whether of pathogenic or symbiotic nature, between microbes and their plant hosts. Secretomics may help to contribute to the global food security and to the ecosystem sustainability by addressing issues in i) plant biosecurity, with the design of crops resistant to pathogens, ii) crop yield enhancement, for example driven by arbuscular mycorrhizal fungi helping plant hosts utilise phosphate from the soil hence increase biomass, and iii) renewable energy, through the identification of microbial enzymes able to augment the bio-conversion of plant lignocellulosic materials for the production of second generation biofuels that do not compete with food production. To this day, more than a hundred secretomics studies have been published on all taxa and the number of publications is increasing steadily. Secretory pathways have been described in various species of microbes and/or their plant hosts, yet the functions of proteins secreted outside the cell remain to be fully grasped. This Research Topic aims at discussing how secretomics can assist the scientists in gaining knowledge about the mechanisms underpinning plant-microbe interactions.

Plant-Microbe Dynamics

Plant-Microbe Dynamics
Title Plant-Microbe Dynamics PDF eBook
Author Tanveer Bilal Pirzadah
Publisher CRC Press
Pages 268
Release 2021-06-07
Genre Science
ISBN 1000388913

Download Plant-Microbe Dynamics Book in PDF, Epub and Kindle

Plants and microbes have co-evolved and interacted with each other in nature. Understanding the complex nature of the plant-microbe interface can pave the way for novel strategies to improve plant productivity in an eco-friendly manner. The microbes associated with plants, often called plant microbiota, are an integral part of plant life. The significance of the plant microbiome is a reliable approach toward sustainability to meet future food crises and rejuvenate soil health. Profiling plant-associate microbiomes (genome assemblies of all microbes) is an emerging concept in understanding plant-microbe interactions. Microbiota extends the plant capacity to acclimatize fluctuating environmental conditions through several mechanisms. Thus, unraveling the mystery of plant-microbe dynamics through latest technologies to better understand the role of metabolites and signal pathway mechanisms is very important. This book shares the latest insight on omics technologies to unravel plant-microbe dynamic interactions and other novel phytotechnologies for cleaning contaminated soils. Besides, it also provides brief insight on the recently discovered clustered regularly interspaced short palindromic repeats CRISPR-Cas9, which is a genome editing tool to explore plant-microbe interactions and how this genome editing tool helps to improve the ability of microbes/plants to combat abiotic/biotic stresses.

Seed Endophytes

Seed Endophytes
Title Seed Endophytes PDF eBook
Author Satish Kumar Verma
Publisher Springer
Pages 507
Release 2019-04-05
Genre Science
ISBN 3030105040

Download Seed Endophytes Book in PDF, Epub and Kindle

This book focuses on the importance and roles of seed microbiomes in sustainable agriculture by exploring the diversity of microbes vectored on and within seeds of both cultivated and non-cultivated plants. It provides essential insights into how seeds can be adapted to enhance microbiome vectoring, how damaged seed microbiomes can be assembled again and how seed microbiomes can be conserved. Plant seeds carry not only embryos and nutrients to fuel early seedling growth, but also microbes that modulate development, soil nutrient acquisition, and defense against pathogens and other stressors. Many of these microbes (bacteria and fungi) become endophytic, entering into the tissues of plants, and typically exist within plants without inducing negative effects. Although they have been reported in all plants examined to date, the extent to which plants rely on seed vectored microbiomes to enhance seedling competitiveness and survival is largely unappreciated. How microbes function to increase the fitness of seedlings is also little understood. The book is a unique and important resource for researchers and students in microbial ecology and biotechnology. Further, it appeals to applied academic and industrial agriculturists interested in increasing crop health and yield.

Plant Proteomics

Plant Proteomics
Title Plant Proteomics PDF eBook
Author Jozef Samaj
Publisher Springer Science & Business Media
Pages 397
Release 2007-09-09
Genre Science
ISBN 3540726179

Download Plant Proteomics Book in PDF, Epub and Kindle

Plant Proteomics highlights rapid progress in this field, with emphasis on recent work in model plant species, sub-cellular organelles, and specific aspects of the plant life cycle such as signaling, reproduction and stress physiology. Several chapters present a detailed look at diverse integrated approaches, including advanced proteomic techniques combined with functional genomics, bioinformatics, metabolomics and molecular cell biology, making this book a valuable resource for a broad spectrum of readers.

The Social Biology of Microbial Communities

The Social Biology of Microbial Communities
Title The Social Biology of Microbial Communities PDF eBook
Author Institute of Medicine
Publisher National Academies Press
Pages 633
Release 2013-01-10
Genre Medical
ISBN 0309264324

Download The Social Biology of Microbial Communities Book in PDF, Epub and Kindle

Beginning with the germ theory of disease in the 19th century and extending through most of the 20th century, microbes were believed to live their lives as solitary, unicellular, disease-causing organisms . This perception stemmed from the focus of most investigators on organisms that could be grown in the laboratory as cellular monocultures, often dispersed in liquid, and under ambient conditions of temperature, lighting, and humidity. Most such inquiries were designed to identify microbial pathogens by satisfying Koch's postulates.3 This pathogen-centric approach to the study of microorganisms produced a metaphorical "war" against these microbial invaders waged with antibiotic therapies, while simultaneously obscuring the dynamic relationships that exist among and between host organisms and their associated microorganisms-only a tiny fraction of which act as pathogens. Despite their obvious importance, very little is actually known about the processes and factors that influence the assembly, function, and stability of microbial communities. Gaining this knowledge will require a seismic shift away from the study of individual microbes in isolation to inquiries into the nature of diverse and often complex microbial communities, the forces that shape them, and their relationships with other communities and organisms, including their multicellular hosts. On March 6 and 7, 2012, the Institute of Medicine's (IOM's) Forum on Microbial Threats hosted a public workshop to explore the emerging science of the "social biology" of microbial communities. Workshop presentations and discussions embraced a wide spectrum of topics, experimental systems, and theoretical perspectives representative of the current, multifaceted exploration of the microbial frontier. Participants discussed ecological, evolutionary, and genetic factors contributing to the assembly, function, and stability of microbial communities; how microbial communities adapt and respond to environmental stimuli; theoretical and experimental approaches to advance this nascent field; and potential applications of knowledge gained from the study of microbial communities for the improvement of human, animal, plant, and ecosystem health and toward a deeper understanding of microbial diversity and evolution. The Social Biology of Microbial Communities: Workshop Summary further explains the happenings of the workshop.

Secretions and Exudates in Biological Systems

Secretions and Exudates in Biological Systems
Title Secretions and Exudates in Biological Systems PDF eBook
Author Jorge M. Vivanco
Publisher Springer Science & Business Media
Pages 284
Release 2012-01-21
Genre Science
ISBN 3642230474

Download Secretions and Exudates in Biological Systems Book in PDF, Epub and Kindle

Secretions and emissions in biological systems play important signaling roles within the organism but also in its communications with the surrounding environment. This volume brings together state-of-the-art information on the role of secretions and emissions in different organs and organisms ranging from flowers and roots of plants to nematodes and human organs. The plant chapters relate information regarding the biochemistry of flower volatiles and root exudates, and their role in attracting pollinators and soil microbial communities respectively. Microbial chapters explain the biochemistry and ecology of quorum sensing and how microbial communities highly co-adapted to plants can aid in bio-energy applications by degrading ligno-cellulosic materials. Other chapters explain the biology of secretions by nematodes, algae and humans, among other organisms. This volume will be a welcome addition to the literature, as no other book covers aspects related to biological secretion in such a holistic and integrative manner.