Homotopy Type Theory: Univalent Foundations of Mathematics
Title | Homotopy Type Theory: Univalent Foundations of Mathematics PDF eBook |
Author | |
Publisher | Univalent Foundations |
Pages | 484 |
Release | |
Genre | |
ISBN |
Homotopy Type Theory
Title | Homotopy Type Theory PDF eBook |
Author | |
Publisher | |
Pages | 0 |
Release | 2013 |
Genre | Homotopy theory |
ISBN |
The present work has its origins in our collective attempts to develop a new style of "informal type theory" that can be read and understood by a human being, as a complement to a formal proof that can be checked by a machine. Univalent foundations is closely tied to the idea of a foundation of mathematics that can be implemented in a computer proof assistant."--Page vi
Motivic Homotopy Theory
Title | Motivic Homotopy Theory PDF eBook |
Author | Bjorn Ian Dundas |
Publisher | Springer Science & Business Media |
Pages | 228 |
Release | 2007-07-11 |
Genre | Mathematics |
ISBN | 3540458972 |
This book is based on lectures given at a summer school on motivic homotopy theory at the Sophus Lie Centre in Nordfjordeid, Norway, in August 2002. Aimed at graduate students in algebraic topology and algebraic geometry, it contains background material from both of these fields, as well as the foundations of motivic homotopy theory. It will serve as a good introduction as well as a convenient reference for a broad group of mathematicians to this important and fascinating new subject. Vladimir Voevodsky is one of the founders of the theory and received the Fields medal for his work, and the other authors have all done important work in the subject.
Reflections on the Foundations of Mathematics
Title | Reflections on the Foundations of Mathematics PDF eBook |
Author | Stefania Centrone |
Publisher | Springer Nature |
Pages | 511 |
Release | 2019-11-11 |
Genre | Mathematics |
ISBN | 3030156559 |
This edited work presents contemporary mathematical practice in the foundational mathematical theories, in particular set theory and the univalent foundations. It shares the work of significant scholars across the disciplines of mathematics, philosophy and computer science. Readers will discover systematic thought on criteria for a suitable foundation in mathematics and philosophical reflections around the mathematical perspectives. The volume is divided into three sections, the first two of which focus on the two most prominent candidate theories for a foundation of mathematics. Readers may trace current research in set theory, which has widely been assumed to serve as a framework for foundational issues, as well as new material elaborating on the univalent foundations, considering an approach based on homotopy type theory (HoTT). The third section then builds on this and is centred on philosophical questions connected to the foundations of mathematics. Here, the authors contribute to discussions on foundational criteria with more general thoughts on the foundations of mathematics which are not connected to particular theories. This book shares the work of some of the most important scholars in the fields of set theory (S. Friedman), non-classical logic (G. Priest) and the philosophy of mathematics (P. Maddy). The reader will become aware of the advantages of each theory and objections to it as a foundation, following the latest and best work across the disciplines and it is therefore a valuable read for anyone working on the foundations of mathematics or in the philosophy of mathematics.
Modal Homotopy Type Theory
Title | Modal Homotopy Type Theory PDF eBook |
Author | David Corfield |
Publisher | Oxford University Press |
Pages | 208 |
Release | 2020-02-06 |
Genre | Philosophy |
ISBN | 0192595032 |
"The old logic put thought in fetters, while the new logic gives it wings." For the past century, philosophers working in the tradition of Bertrand Russell - who promised to revolutionise philosophy by introducing the 'new logic' of Frege and Peano - have employed predicate logic as their formal language of choice. In this book, Dr David Corfield presents a comparable revolution with a newly emerging logic - modal homotopy type theory. Homotopy type theory has recently been developed as a new foundational language for mathematics, with a strong philosophical pedigree. Modal Homotopy Type Theory: The Prospect of a New Logic for Philosophy offers an introduction to this new language and its modal extension, illustrated through innovative applications of the calculus to language, metaphysics, and mathematics. The chapters build up to the full language in stages, right up to the application of modal homotopy type theory to current geometry. From a discussion of the distinction between objects and events, the intrinsic treatment of structure, the conception of modality as a form of general variation to the representation of constructions in modern geometry, we see how varied the applications of this powerful new language can be.
Type Theory and Formal Proof
Title | Type Theory and Formal Proof PDF eBook |
Author | Rob Nederpelt |
Publisher | Cambridge University Press |
Pages | 465 |
Release | 2014-11-06 |
Genre | Computers |
ISBN | 1316061086 |
Type theory is a fast-evolving field at the crossroads of logic, computer science and mathematics. This gentle step-by-step introduction is ideal for graduate students and researchers who need to understand the ins and outs of the mathematical machinery, the role of logical rules therein, the essential contribution of definitions and the decisive nature of well-structured proofs. The authors begin with untyped lambda calculus and proceed to several fundamental type systems, including the well-known and powerful Calculus of Constructions. The book also covers the essence of proof checking and proof development, and the use of dependent type theory to formalise mathematics. The only prerequisite is a basic knowledge of undergraduate mathematics. Carefully chosen examples illustrate the theory throughout. Each chapter ends with a summary of the content, some historical context, suggestions for further reading and a selection of exercises to help readers familiarise themselves with the material.
Categories for the Working Philosopher
Title | Categories for the Working Philosopher PDF eBook |
Author | Elaine M. Landry |
Publisher | Oxford University Press |
Pages | 486 |
Release | 2017 |
Genre | Mathematics |
ISBN | 019874899X |
This is the first volume on category theory for a broad philosophical readership. It is designed to show the interest and significance of category theory for a range of philosophical interests: mathematics, proof theory, computation, cognition, scientific modelling, physics, ontology, the structure of the world. Each chapter is written by either a category-theorist or a philosopher working in one of the represented areas, in an accessible waythat builds on the concepts that are already familiar to philosophers working in these areas.