Higher Segal Spaces

Higher Segal Spaces
Title Higher Segal Spaces PDF eBook
Author Tobias Dyckerhoff
Publisher Springer Nature
Pages 230
Release 2019-10-17
Genre Mathematics
ISBN 3030271242

Download Higher Segal Spaces Book in PDF, Epub and Kindle

This monograph initiates a theory of new categorical structures that generalize the simplicial Segal property to higher dimensions. The authors introduce the notion of a d-Segal space, which is a simplicial space satisfying locality conditions related to triangulations of d-dimensional cyclic polytopes. Focus here is on the 2-dimensional case. Many important constructions are shown to exhibit the 2-Segal property, including Waldhausen’s S-construction, Hecke-Waldhausen constructions, and configuration spaces of flags. The relevance of 2-Segal spaces in the study of Hall and Hecke algebras is discussed. Higher Segal Spaces marks the beginning of a program to systematically study d-Segal spaces in all dimensions d. The elementary formulation of 2-Segal spaces in the opening chapters is accessible to readers with a basic background in homotopy theory. A chapter on Bousfield localizations provides a transition to the general theory, formulated in terms of combinatorial model categories, that features in the main part of the book. Numerous examples throughout assist readers entering this exciting field to move toward active research; established researchers in the area will appreciate this work as a reference.

Higher Topos Theory

Higher Topos Theory
Title Higher Topos Theory PDF eBook
Author Jacob Lurie
Publisher Princeton University Press
Pages 944
Release 2009-07-26
Genre Mathematics
ISBN 0691140480

Download Higher Topos Theory Book in PDF, Epub and Kindle

In 'Higher Topos Theory', Jacob Lurie presents the foundations of this theory using the language of weak Kan complexes introduced by Boardman and Vogt, and shows how existing theorems in algebraic topology can be reformulated and generalized in the theory's new language.

Towards Higher Categories

Towards Higher Categories
Title Towards Higher Categories PDF eBook
Author John C. Baez
Publisher Springer Science & Business Media
Pages 292
Release 2009-09-24
Genre Algebra
ISBN 1441915362

Download Towards Higher Categories Book in PDF, Epub and Kindle

The purpose of this book is to give background for those who would like to delve into some higher category theory. It is not a primer on higher category theory itself. It begins with a paper by John Baez and Michael Shulman which explores informally, by analogy and direct connection, how cohomology and other tools of algebraic topology are seen through the eyes of n-category theory. The idea is to give some of the motivations behind this subject. There are then two survey articles, by Julie Bergner and Simona Paoli, about (infinity,1) categories and about the algebraic modelling of homotopy n-types. These are areas that are particularly well understood, and where a fully integrated theory exists. The main focus of the book is on the richness to be found in the theory of bicategories, which gives the essential starting point towards the understanding of higher categorical structures. An article by Stephen Lack gives a thorough, but informal, guide to this theory. A paper by Larry Breen on the theory of gerbes shows how such categorical structures appear in differential geometry. This book is dedicated to Max Kelly, the founder of the Australian school of category theory, and an historical paper by Ross Street describes its development.

Infinity Properads and Infinity Wheeled Properads

Infinity Properads and Infinity Wheeled Properads
Title Infinity Properads and Infinity Wheeled Properads PDF eBook
Author Philip Hackney
Publisher Springer
Pages 368
Release 2015-09-07
Genre Mathematics
ISBN 3319205471

Download Infinity Properads and Infinity Wheeled Properads Book in PDF, Epub and Kindle

The topic of this book sits at the interface of the theory of higher categories (in the guise of (∞,1)-categories) and the theory of properads. Properads are devices more general than operads and enable one to encode bialgebraic, rather than just (co)algebraic, structures. The text extends both the Joyal-Lurie approach to higher categories and the Cisinski-Moerdijk-Weiss approach to higher operads, and provides a foundation for a broad study of the homotopy theory of properads. This work also serves as a complete guide to the generalised graphs which are pervasive in the study of operads and properads. A preliminary list of potential applications and extensions comprises the final chapter. Infinity Properads and Infinity Wheeled Properads is written for mathematicians in the fields of topology, algebra, category theory, and related areas. It is written roughly at the second year graduate level, and assumes a basic knowledge of category theory.

Simplicial and Dendroidal Homotopy Theory

Simplicial and Dendroidal Homotopy Theory
Title Simplicial and Dendroidal Homotopy Theory PDF eBook
Author Gijs Heuts
Publisher Springer Nature
Pages 622
Release 2022-09-03
Genre Mathematics
ISBN 3031104471

Download Simplicial and Dendroidal Homotopy Theory Book in PDF, Epub and Kindle

This open access book offers a self-contained introduction to the homotopy theory of simplicial and dendroidal sets and spaces. These are essential for the study of categories, operads, and algebraic structure up to coherent homotopy. The dendroidal theory combines the combinatorics of trees with the theory of Quillen model categories. Dendroidal sets are a natural generalization of simplicial sets from the point of view of operads. In this book, the simplicial approach to higher category theory is generalized to a dendroidal approach to higher operad theory. This dendroidal theory of higher operads is carefully developed in this book. The book also provides an original account of the more established simplicial approach to infinity-categories, which is developed in parallel to the dendroidal theory to emphasize the similarities and differences. Simplicial and Dendroidal Homotopy Theory is a complete introduction, carefully written with the beginning researcher in mind and ideally suited for seminars and courses. It can also be used as a standalone introduction to simplicial homotopy theory and to the theory of infinity-categories, or a standalone introduction to the theory of Quillen model categories and Bousfield localization.

Handbook of Homotopy Theory

Handbook of Homotopy Theory
Title Handbook of Homotopy Theory PDF eBook
Author Haynes Miller
Publisher CRC Press
Pages 1142
Release 2020-01-23
Genre Mathematics
ISBN 1351251600

Download Handbook of Homotopy Theory Book in PDF, Epub and Kindle

The Handbook of Homotopy Theory provides a panoramic view of an active area in mathematics that is currently seeing dramatic solutions to long-standing open problems, and is proving itself of increasing importance across many other mathematical disciplines. The origins of the subject date back to work of Henri Poincaré and Heinz Hopf in the early 20th century, but it has seen enormous progress in the 21st century. A highlight of this volume is an introduction to and diverse applications of the newly established foundational theory of ¥ -categories. The coverage is vast, ranging from axiomatic to applied, from foundational to computational, and includes surveys of applications both geometric and algebraic. The contributors are among the most active and creative researchers in the field. The 22 chapters by 31 contributors are designed to address novices, as well as established mathematicians, interested in learning the state of the art in this field, whose methods are of increasing importance in many other areas.

Topology and Quantum Theory in Interaction

Topology and Quantum Theory in Interaction
Title Topology and Quantum Theory in Interaction PDF eBook
Author David Ayala
Publisher American Mathematical Soc.
Pages 274
Release 2018-10-25
Genre Mathematics
ISBN 1470442434

Download Topology and Quantum Theory in Interaction Book in PDF, Epub and Kindle

This volume contains the proceedings of the NSF-CBMS Regional Conference on Topological and Geometric Methods in QFT, held from July 31–August 4, 2017, at Montana State University in Bozeman, Montana. In recent decades, there has been a movement to axiomatize quantum field theory into a mathematical structure. In a different direction, one can ask to test these axiom systems against physics. Can they be used to rederive known facts about quantum theories or, better yet, be the framework in which to solve open problems? Recently, Freed and Hopkins have provided a solution to a classification problem in condensed matter theory, which is ultimately based on the field theory axioms of Graeme Segal. Papers contained in this volume amplify various aspects of the Freed–Hopkins program, develop some category theory, which lies behind the cobordism hypothesis, the major structure theorem for topological field theories, and relate to Costello's approach to perturbative quantum field theory. Two papers on the latter use this framework to recover fundamental results about some physical theories: two-dimensional sigma-models and the bosonic string. Perhaps it is surprising that such sparse axiom systems encode enough structure to prove important results in physics. These successes can be taken as encouragement that the axiom systems are at least on the right track toward articulating what a quantum field theory is.