Higher Airy Structures, $mathcal {W}$ Algebras and Topological Recursion
Title | Higher Airy Structures, $mathcal {W}$ Algebras and Topological Recursion PDF eBook |
Author | Gaëtan Borot |
Publisher | American Mathematical Society |
Pages | 120 |
Release | 2024-05-15 |
Genre | Mathematics |
ISBN | 1470469065 |
View the abstract.
Decoding Reality
Title | Decoding Reality PDF eBook |
Author | Vlatko Vedral |
Publisher | Oxford University Press |
Pages | 257 |
Release | 2018 |
Genre | Computers |
ISBN | 0198815433 |
In this engaging and mind-stretching book, Vlatko Vedral explores the nature of information and looks at quantum computing, discussing the bizarre effects that arise from the quantum world. He concludes by asking the ultimate question: where did all of the information in the Universe come from?
Asymptotic Expansion of a Partition Function Related to the Sinh-model
Title | Asymptotic Expansion of a Partition Function Related to the Sinh-model PDF eBook |
Author | Gaëtan Borot |
Publisher | Springer |
Pages | 233 |
Release | 2016-12-08 |
Genre | Science |
ISBN | 3319333798 |
This book elaborates on the asymptotic behaviour, when N is large, of certain N-dimensional integrals which typically occur in random matrices, or in 1+1 dimensional quantum integrable models solvable by the quantum separation of variables. The introduction presents the underpinning motivations for this problem, a historical overview, and a summary of the strategy, which is applicable in greater generality. The core aims at proving an expansion up to o(1) for the logarithm of the partition function of the sinh-model. This is achieved by a combination of potential theory and large deviation theory so as to grasp the leading asymptotics described by an equilibrium measure, the Riemann-Hilbert approach to truncated Wiener-Hopf in order to analyse the equilibrium measure, the Schwinger-Dyson equations and the boostrap method to finally obtain an expansion of correlation functions and the one of the partition function. This book is addressed to researchers working in random matrices, statistical physics or integrable systems, or interested in recent developments of asymptotic analysis in those fields.
String-Math 2014
Title | String-Math 2014 PDF eBook |
Author | Vincent Bouchard: |
Publisher | American Mathematical Soc. |
Pages | 418 |
Release | 2016-06-10 |
Genre | Mathematics |
ISBN | 1470419920 |
The conference String-Math 2014 was held from June 9–13, 2014, at the University of Alberta. This edition of String-Math is the first to include satellite workshops: “String-Math Summer School” (held from June 2–6, 2014, at the University of British Columbia), “Calabi-Yau Manifolds and their Moduli” (held from June 14–18, 2014, at the University of Alberta), and “Quantum Curves and Quantum Knot Invariants” (held from June 16–20, 2014, at the Banff International Research Station). This volume presents the proceedings of the conference and satellite workshops. For mathematics, string theory has been a source of many significant inspirations, ranging from Seiberg-Witten theory in four-manifolds, to enumerative geometry and Gromov-Witten theory in algebraic geometry, to work on the Jones polynomial in knot theory, to recent progress in the geometric Langlands program and the development of derived algebraic geometry and n-category theory. In the other direction, mathematics has provided physicists with powerful tools, ranging from powerful differential geometric techniques for solving or analyzing key partial differential equations, to toric geometry, to K-theory and derived categories in D-branes, to the analysis of Calabi-Yau manifolds and string compactifications, to modular forms and other arithmetic techniques. Articles in this book address many of these topics.
Modular Forms and String Duality
Title | Modular Forms and String Duality PDF eBook |
Author | Noriko Yui |
Publisher | American Mathematical Soc. |
Pages | 320 |
Release | 2008 |
Genre | Mathematics |
ISBN | 0821844849 |
"This book is a testimony to the BIRS Workshop, and it covers a wide range of topics at the interface of number theory and string theory, with special emphasis on modular forms and string duality. They include the recent advances as well as introductory expositions on various aspects of modular forms, motives, differential equations, conformal field theory, topological strings and Gromov-Witten invariants, mirror symmetry, and homological mirror symmetry. The contributions are roughly divided into three categories: arithmetic and modular forms, geometric and differential equations, and physics and string theory. The book is suitable for researchers working at the interface of number theory and string theory."--BOOK JACKET.
Basic Algebraic Geometry 2
Title | Basic Algebraic Geometry 2 PDF eBook |
Author | Igor Rostislavovich Shafarevich |
Publisher | Springer Science & Business Media |
Pages | 292 |
Release | 1994 |
Genre | Mathematics |
ISBN | 9783540575542 |
The second volume of Shafarevich's introductory book on algebraic geometry focuses on schemes, complex algebraic varieties and complex manifolds. As with Volume 1 the author has revised the text and added new material, e.g. a section on real algebraic curves. Although the material is more advanced than in Volume 1 the algebraic apparatus is kept to a minimum making the book accessible to non-specialists. It can be read independently of Volume 1 and is suitable for beginning graduate students in mathematics as well as in theoretical physics.
B-Model Gromov-Witten Theory
Title | B-Model Gromov-Witten Theory PDF eBook |
Author | Emily Clader |
Publisher | Springer |
Pages | 635 |
Release | 2019-04-08 |
Genre | Mathematics |
ISBN | 3319942204 |
This book collects various perspectives, contributed by both mathematicians and physicists, on the B-model and its role in mirror symmetry. Mirror symmetry is an active topic of research in both the mathematics and physics communities, but among mathematicians, the “A-model” half of the story remains much better-understood than the B-model. This book aims to address that imbalance. It begins with an overview of several methods by which mirrors have been constructed, and from there, gives a thorough account of the “BCOV” B-model theory from a physical perspective; this includes the appearance of such phenomena as the holomorphic anomaly equation and connections to number theory via modularity. Following a mathematical exposition of the subject of quantization, the remainder of the book is devoted to the B-model from a mathematician’s point-of-view, including such topics as polyvector fields and primitive forms, Givental’s ancestor potential, and integrable systems.