High-Pressure Fluid Phase Equilibria

High-Pressure Fluid Phase Equilibria
Title High-Pressure Fluid Phase Equilibria PDF eBook
Author Ulrich K Deiters
Publisher Elsevier
Pages 363
Release 2012-04-26
Genre Technology & Engineering
ISBN 0444563547

Download High-Pressure Fluid Phase Equilibria Book in PDF, Epub and Kindle

The book begins with an overview of the phase diagrams of fluid mixtures (fluid = liquid, gas, or supercritical state), which can show an astonishing variety when elevated pressures are taken into account; phenomena like retrograde condensation (single and double) and azeotropy (normal and double) are discussed. It then gives an introduction into the relevant thermodynamic equations for fluid mixtures, including some that are rarely found in modern textbooks, and shows how they can they be used to compute phase diagrams and related properties. This chapter gives a consistent and axiomatic approach to fluid thermodynamics; it avoids using activity coefficients. Further chapters are dedicated to solid-fluid phase equilibria and global phase diagrams (systematic search for phase diagram classes). The appendix contains numerical algorithms needed for the computations. The book thus enables the reader to create or improve computer programs for the calculation of fluid phase diagrams. - introduces phase diagram classes, how to recognize them and identify their characteristic features - presents rational nomenclature of binary fluid phase diagrams - includes problems and solutions for self-testing, exercises or seminars

Molecular Thermodynamics of Fluid-Phase Equilibria

Molecular Thermodynamics of Fluid-Phase Equilibria
Title Molecular Thermodynamics of Fluid-Phase Equilibria PDF eBook
Author John M. Prausnitz
Publisher Pearson Education
Pages 1150
Release 1998-10-22
Genre Science
ISBN 0132440504

Download Molecular Thermodynamics of Fluid-Phase Equilibria Book in PDF, Epub and Kindle

The classic guide to mixtures, completely updated with new models, theories, examples, and data. Efficient separation operations and many other chemical processes depend upon a thorough understanding of the properties of gaseous and liquid mixtures. Molecular Thermodynamics of Fluid-Phase Equilibria, Third Edition is a systematic, practical guide to interpreting, correlating, and predicting thermodynamic properties used in mixture-related phase-equilibrium calculations. Completely updated, this edition reflects the growing maturity of techniques grounded in applied statistical thermodynamics and molecular simulation, while relying on classical thermodynamics, molecular physics, and physical chemistry wherever these fields offer superior solutions. Detailed new coverage includes: Techniques for improving separation processes and making them more environmentally friendly. Theoretical concepts enabling the description and interpretation of solution properties. New models, notably the lattice-fluid and statistical associated-fluid theories. Polymer solutions, including gas-polymer equilibria, polymer blends, membranes, and gels. Electrolyte solutions, including semi-empirical models for solutions containing salts or volatile electrolytes. Coverage also includes: fundamentals of classical thermodynamics of phase equilibria; thermodynamic properties from volumetric data; intermolecular forces; fugacities in gas and liquid mixtures; solubilities of gases and solids in liquids; high-pressure phase equilibria; virial coefficients for quantum gases; and much more. Throughout, Molecular Thermodynamics of Fluid-Phase Equilibria strikes a perfect balance between empirical techniques and theory, and is replete with useful examples and experimental data. More than ever, it is the essential resource for engineers, chemists, and other professionals working with mixtures and related processes.

High Pressure Fluid Technology for Green Food Processing

High Pressure Fluid Technology for Green Food Processing
Title High Pressure Fluid Technology for Green Food Processing PDF eBook
Author Tiziana Fornari
Publisher Springer
Pages 521
Release 2014-10-31
Genre Technology & Engineering
ISBN 3319106112

Download High Pressure Fluid Technology for Green Food Processing Book in PDF, Epub and Kindle

The aim of this book is to present the fundamentals of high pressure technologies from the perspective of mass transfer phenomena and thermodynamic considerations. Novel food applications are exposed and their relation to chemical analysis, extraction, reaction and particle formation processes are outlined. The chapters are written by a diverse group of scientists with expertise in chemistry, food processes, analytical chemistry, chemical engineering and chemical engineering thermodynamics, and biotechnology. The mission of green food engineering is to promote innovative technologies that reduce or eliminate the use or generation of hazardous materials (solvents, reagents) in the design and operation of food related processes, with the view to improve food safety and quality. Several efficient, environmentally friendly and benign technologies based on the use of high pressure and green solvents have demonstrated to be sustainable alternatives to traditional processes in the food industry. Although hundreds of new ideas are being published in the open literature, reliable engineering tools to simulate and design those processes are still under development. High Pressure Fluid Technology for Green Food Processing presents in-depth analyses and outlines the ways towards their maturity. Tiziana Fornari, Research Institute of Food Science (CIAL) Universidad Autonoma de Madrid, Madrid, Spain Roumiana P. Stateva, Institute of Chemical Engineering, Bulgarian Academy of Sciences, Sofia, Bulgaria

Equations of State

Equations of State
Title Equations of State PDF eBook
Author Kwang-chu Chao
Publisher
Pages 616
Release 1986
Genre Science
ISBN

Download Equations of State Book in PDF, Epub and Kindle

Phase Equilibrium Engineering

Phase Equilibrium Engineering
Title Phase Equilibrium Engineering PDF eBook
Author Esteban Brignole
Publisher Elsevier Inc. Chapters
Pages 57
Release 2013-04-02
Genre Science
ISBN 0128082658

Download Phase Equilibrium Engineering Book in PDF, Epub and Kindle

The benefits of using SCF as reaction media have promoted an intense research and development activity in this field. In this chapter, several case studies demonstrate the advantages of working under supercritical conditions. In particular, gas–liquid catalyzed reactions are one of the areas where the use of supercritical fluids is very attractive. In general, these reactions are diffusion-controlled and the use of supercritical fluids increases the reaction rate by eliminating the gas–liquid interface. In this chapter also, the interesting properties of operation under near-critical conditions are analyzed: higher solubility of reactants and products in the supercritical phase, reduced deposition of reacting components on the catalyst pores, diffusion coefficients higher than in liquids, independent control of the concentration of permanent gases like H2, O2, or CO in the reaction mixture, higher thermal capacity, and low interfacial tension The hydrogenation of low volatile liquids, using solid–fluid heterogeneous catalysts, is presented to show the advantages of working under supercritical conditions. In this case study, the selection of the process conditions that guarantees operation under a supercritical single-phase state is discussed as a typical phase equilibrium engineering problem. Finally, for reactions in which the SCF plays a role not only as solvent but also as a reactant, the problem of phase condition design and cosolvent selection is addressed.

Vapor-Liquid Equilibria Using Unifac

Vapor-Liquid Equilibria Using Unifac
Title Vapor-Liquid Equilibria Using Unifac PDF eBook
Author Aage Fredenslund
Publisher Elsevier
Pages 393
Release 2012-12-02
Genre Technology & Engineering
ISBN 0444601503

Download Vapor-Liquid Equilibria Using Unifac Book in PDF, Epub and Kindle

Vapor-Liquid Equilibria Using UNIFAC: A Group-Contribution Method focuses on the UNIFAC group-contribution method used in predicting quantitative information on the phase equilibria during separation by estimating activity coefficients. Drawing on tested vapor-liquid equilibrium data on which UNIFAC is based, it demonstrates through examples how the method may be used in practical engineering design calculations. Divided into nine chapters, this volume begins with a discussion of vapor and liquid phase nonidealities and how they are calculated in terms of fugacity and activity coefficients, respectively. It then introduces the reader to the UNIFAC method and how it works, the procedure used in establishing the parameters needed for the model, prediction of binary and multicomponent vapor-liquid equilibria for a large number of systems, the potential of UNIFAC for predicting liquid-liquid equilibria, and how UNIFAC can be used to solve practical distillation design problems. This book will benefit process design engineers who want to reliably predict phase equilibria for designing distillation columns and other separation processes.

Thermodynamics of Phase Equilibria in Food Engineering

Thermodynamics of Phase Equilibria in Food Engineering
Title Thermodynamics of Phase Equilibria in Food Engineering PDF eBook
Author Camila Gambini Pereira
Publisher Academic Press
Pages 684
Release 2018-10-17
Genre Technology & Engineering
ISBN 0128115572

Download Thermodynamics of Phase Equilibria in Food Engineering Book in PDF, Epub and Kindle

Thermodynamics of Phase Equilibria in Food Engineering is the definitive book on thermodynamics of equilibrium applied to food engineering. Food is a complex matrix consisting of different groups of compounds divided into macronutrients (lipids, carbohydrates, and proteins), and micronutrients (vitamins, minerals, and phytochemicals). The quality characteristics of food products associated with the sensorial, physical and microbiological attributes are directly related to the thermodynamic properties of specific compounds and complexes that are formed during processing or by the action of diverse interventions, such as the environment, biochemical reactions, and others. In addition, in obtaining bioactive substances using separation processes, the knowledge of phase equilibria of food systems is essential to provide an efficient separation, with a low cost in the process and high selectivity in the recovery of the desired component. This book combines theory and application of phase equilibria data of systems containing food compounds to help food engineers and researchers to solve complex problems found in food processing. It provides support to researchers from academia and industry to better understand the behavior of food materials in the face of processing effects, and to develop ways to improve the quality of the food products. - Presents the fundamentals of phase equilibria in the food industry - Describes both classic and advanced models, including cubic equations of state and activity coefficient - Encompasses distillation, solid-liquid extraction, liquid-liquid extraction, adsorption, crystallization and supercritical fluid extraction - Explores equilibrium in advanced systems, including colloidal, electrolyte and protein systems