Heat Transfer and Evaporation

Heat Transfer and Evaporation
Title Heat Transfer and Evaporation PDF eBook
Author Walter Lucius Badger
Publisher
Pages 316
Release 1926
Genre Evaporation
ISBN

Download Heat Transfer and Evaporation Book in PDF, Epub and Kindle

Evaporation, Condensation and Heat Transfer

Evaporation, Condensation and Heat Transfer
Title Evaporation, Condensation and Heat Transfer PDF eBook
Author Petros Antonis
Publisher
Pages 294
Release 2016-04-01
Genre
ISBN 9781681173085

Download Evaporation, Condensation and Heat Transfer Book in PDF, Epub and Kindle

Heat is the kinetic energy of particles as they vibrate. If we heat the particles at one end of a material the particles at that end vibrate more (have more kinetic energy) and bump into the neighboring particles which causes them to vibrate more. They collide with their neighbors and so the energy passes from one particle to another through the material. Evaporation and condensation are two processes through which matter changes from one state to another. Matter can exist in three different states: solid, liquid, or gas. In evaporation, matter changes from a liquid to a gas. In condensation, matter changes from a gas to a liquid. All matter is made of tiny moving particles called molecules. Evaporation and condensation happen when these molecules gain or lose energy in the form of heat. Evaporation happens when a liquid is heated. The heat gives the liquid's molecules more energy. This energy causes the molecules to move faster. If they gain enough energy, the molecules near the surface break away. These molecules escape the liquid and enter the air as gas. Condensation happens when molecules in a gas cool down. As the molecules lose heat, they lose energy. As a result they slow down. They move closer to other gas molecules. Finally these molecules collect together to form a liquid. The theoretical analysis and modeling of heat and mass transfer rates produced in evaporation and condensation processes are noteworthy concerns in a design of extensive range of industrial processes and devices. The book Evaporation, Condensation and Heat transfer emphasizes on the current issues of modeling on evaporation, water vapor condensation, heat transfer and exchanger, and on fluid flow in different aspects. The approaches would be applicable in various industrial purposes as well. The advanced idea and information described here will be fruitful for the readers to find a sustainable solution in an industrialized society..

Drop Dynamics and Dropwise Condensation on Textured Surfaces

Drop Dynamics and Dropwise Condensation on Textured Surfaces
Title Drop Dynamics and Dropwise Condensation on Textured Surfaces PDF eBook
Author Sameer Khandekar
Publisher Springer Nature
Pages 462
Release 2020-09-11
Genre Science
ISBN 3030484610

Download Drop Dynamics and Dropwise Condensation on Textured Surfaces Book in PDF, Epub and Kindle

This book is an expanded form of the monograph, Dropwise Condensation on Inclined Textured Surfaces, Springer, 2013, published earlier by the authors, wherein a mathematical model for dropwise condensation of pure vapor over inclined textured surfaces was presented, followed by simulations and comparison with experiments. The model factored in several details of the overall quasi-cyclic process but approximated those at the scale of individual drops. In the last five years, drop level dynamics over hydrophobic surfaces have been extensively studied. These results can now be incorporated in the dropwise condensation model. Dropwise condensation is an efficient route to heat transfer and is often encountered in major power generation applications. Drops are also formed during condensation in distillation devices that work with diverse fluids ranging from water to liquid metals. Design of such equipment requires careful understanding of the condensation cycle, starting from the birth of nuclei, followed by molecular clusters, direct growth of droplets, their coalescence, all the way to instability and fall-off of condensed drops. The model described here considers these individual steps of the condensation cycle. Additional discussions include drop shape determination under static conditions, a fundamental study of drop spreading in sessile and pendant configurations, and the details of the drop coalescence phenomena. These are subsequently incorporated in the condensation model and their consequences are examined. As the mathematical model is spread over multiple scales of length and time, a parallelization approach to simulation is presented. Special topics include three-phase contact line modeling, surface preparation techniques, fundamentals of evaporation and evaporation rates of a single liquid drop, and measurement of heat transfer coefficient during large-scale condensation of water vapor. We hope that this significantly expanded text meets the expectations of design engineers, analysts, and researchers working in areas related to phase-change phenomena and heat transfer.

Heat Transfer in Condensation and Boiling

Heat Transfer in Condensation and Boiling
Title Heat Transfer in Condensation and Boiling PDF eBook
Author Karl Stephan
Publisher Springer Science & Business Media
Pages 342
Release 2013-06-29
Genre Technology & Engineering
ISBN 3642524575

Download Heat Transfer in Condensation and Boiling Book in PDF, Epub and Kindle

I welcome the opportunity to have my book translated, because of the great emphasis on two-phase flow and heat transfer in the English-speaking world, as related to research, university education, and industrial practice. The 1988 Springer-Verlag edition of "Warmeiibergang beim Kondensieren und beim Sieden" has been enlarged to include additional material on falling film evaporation (Chapter 12) and pressure drop in two-phase flow (Chapter 13). Minor errors in the original text have also been corrected. I would like to express my sincere appreciation to Professor Green, Asso ciate Professor of German at Rensselaer, for his excellent translation and co operation. My thanks go also to Professor Bergles for his close attention to technical and linguistic details. He carefully read the typescript and made many comments and suggestions that helped to improve the manuscript. I hope that the English edition will meet with' a favorable reception and contribute to better understanding and to progress in the field of heat transfer in condensation and boiling. February 1992 K. Stephan Preface to the German-Language Edition This book is a continuation of the series "Heat and Mass Transfer" edited by U. Grigull, in which three volumes have already been published. Its aim is to acquaint students and practicing engineers with heat transfer during condensa tion and boiling, and is intended primarily for students and engineers in mechanical, chemical, electrical, and industrial processing engineering.

University Physics

University Physics
Title University Physics PDF eBook
Author Samuel J. Ling
Publisher
Pages 818
Release 2017-12-19
Genre Science
ISBN 9789888407613

Download University Physics Book in PDF, Epub and Kindle

University Physics is designed for the two- or three-semester calculus-based physics course. The text has been developed to meet the scope and sequence of most university physics courses and provides a foundation for a career in mathematics, science, or engineering. The book provides an important opportunity for students to learn the core concepts of physics and understand how those concepts apply to their lives and to the world around them. Due to the comprehensive nature of the material, we are offering the book in three volumes for flexibility and efficiency. Coverage and Scope Our University Physics textbook adheres to the scope and sequence of most two- and three-semester physics courses nationwide. We have worked to make physics interesting and accessible to students while maintaining the mathematical rigor inherent in the subject. With this objective in mind, the content of this textbook has been developed and arranged to provide a logical progression from fundamental to more advanced concepts, building upon what students have already learned and emphasizing connections between topics and between theory and applications. The goal of each section is to enable students not just to recognize concepts, but to work with them in ways that will be useful in later courses and future careers. The organization and pedagogical features were developed and vetted with feedback from science educators dedicated to the project. VOLUME II Unit 1: Thermodynamics Chapter 1: Temperature and Heat Chapter 2: The Kinetic Theory of Gases Chapter 3: The First Law of Thermodynamics Chapter 4: The Second Law of Thermodynamics Unit 2: Electricity and Magnetism Chapter 5: Electric Charges and Fields Chapter 6: Gauss's Law Chapter 7: Electric Potential Chapter 8: Capacitance Chapter 9: Current and Resistance Chapter 10: Direct-Current Circuits Chapter 11: Magnetic Forces and Fields Chapter 12: Sources of Magnetic Fields Chapter 13: Electromagnetic Induction Chapter 14: Inductance Chapter 15: Alternating-Current Circuits Chapter 16: Electromagnetic Waves

Heat Transfer in Evaporation and Condensation

Heat Transfer in Evaporation and Condensation
Title Heat Transfer in Evaporation and Condensation PDF eBook
Author Max Jakob
Publisher
Pages 75
Release 1937
Genre Evaporation, Latent heat of
ISBN

Download Heat Transfer in Evaporation and Condensation Book in PDF, Epub and Kindle

Process Analysis, Design, and Intensification in Microfluidics and Chemical Engineering

Process Analysis, Design, and Intensification in Microfluidics and Chemical Engineering
Title Process Analysis, Design, and Intensification in Microfluidics and Chemical Engineering PDF eBook
Author Santana, Harrson Silva
Publisher IGI Global
Pages 388
Release 2019-01-18
Genre Technology & Engineering
ISBN 1522571396

Download Process Analysis, Design, and Intensification in Microfluidics and Chemical Engineering Book in PDF, Epub and Kindle

Microfluidics represent great potential for chemical processes design, development, optimization, and chemical engineering bolsters the project design of industrial processes often found in large chemical plants. Together, microfluidics and chemical engineering can lead to a more complete and comprehensive process. Process Analysis, Design, and Intensification in Microfluidics and Chemical Engineering provides emerging research exploring the theoretical and practical aspects of microfluidics and its application in chemical engineering with the intention of building pathways for new processes and product developments in industrial areas. Featuring coverage on a broad range of topics such as design techniques, hydrodynamics, and numerical modelling, this book is ideally designed for engineers, chemists, microfluidics and chemical engineering companies, academicians, researchers, and students.