Harmonic Morphisms Between Riemannian Manifolds
Title | Harmonic Morphisms Between Riemannian Manifolds PDF eBook |
Author | Paul Baird |
Publisher | Oxford University Press |
Pages | 540 |
Release | 2003 |
Genre | Mathematics |
ISBN | 9780198503620 |
This is an account in book form of the theory of harmonic morphisms between Riemannian manifolds.
Two Reports on Harmonic Maps
Title | Two Reports on Harmonic Maps PDF eBook |
Author | James Eells |
Publisher | World Scientific |
Pages | 38 |
Release | 1995 |
Genre | Mathematics |
ISBN | 9789810214661 |
Harmonic maps between Riemannian manifolds are solutions of systems of nonlinear partial differential equations which appear in different contexts of differential geometry. They include holomorphic maps, minimal surfaces, å-models in physics. Recently, they have become powerful tools in the study of global properties of Riemannian and Khlerian manifolds.A standard reference for this subject is a pair of Reports, published in 1978 and 1988 by James Eells and Luc Lemaire.This book presents these two reports in a single volume with a brief supplement reporting on some recent developments in the theory. It is both an introduction to the subject and a unique source of references, providing an organized exposition of results spread throughout more than 800 papers.
Harmonic Maps Between Riemannian Polyhedra
Title | Harmonic Maps Between Riemannian Polyhedra PDF eBook |
Author | James Eells |
Publisher | Cambridge University Press |
Pages | 316 |
Release | 2001-07-30 |
Genre | Mathematics |
ISBN | 9780521773119 |
A research level book on harmonic maps between singular spaces, by renowned authors, first published in 2001.
Harmonic Morphisms, Harmonic Maps and Related Topics
Title | Harmonic Morphisms, Harmonic Maps and Related Topics PDF eBook |
Author | Christopher Kum Anand |
Publisher | CRC Press |
Pages | 332 |
Release | 1999-10-13 |
Genre | Mathematics |
ISBN | 9781584880325 |
The subject of harmonic morphisms is relatively new but has attracted a huge worldwide following. Mathematicians, young researchers and distinguished experts came from all corners of the globe to the City of Brest - site of the first, international conference devoted to the fledgling but dynamic field of harmonic morphisms. Harmonic Morphisms, Harmonic Maps, and Related Topics reports the proceedings of that conference, forms the first work primarily devoted to harmonic morphisms, bringing together contributions from the founders of the subject, leading specialists, and experts in other related fields. Starting with "The Beginnings of Harmonic Morphisms," which provides the essential background, the first section includes papers on the stability of harmonic morphisms, global properties, harmonic polynomial morphisms, Bochner technique, f-structures, symplectic harmonic morphisms, and discrete harmonic morphisms. The second section addresses the wider domain of harmonic maps and contains some of the most recent results on harmonic maps and surfaces. The final section highlights the rapidly developing subject of constant mean curvature surfaces. Harmonic Morphisms, Harmonic Maps, and Related Topics offers a coherent, balanced account of this fast-growing subject that furnishes a vital reference for anyone working in the field.
Geometry of Harmonic Maps
Title | Geometry of Harmonic Maps PDF eBook |
Author | Yuanlong Xin |
Publisher | Springer Science & Business Media |
Pages | 264 |
Release | 1996-04-30 |
Genre | Mathematics |
ISBN | 9780817638207 |
Harmonic maps are solutions to a natural geometrical variational prob lem. This notion grew out of essential notions in differential geometry, such as geodesics, minimal surfaces and harmonic functions. Harmonic maps are also closely related to holomorphic maps in several complex variables, to the theory of stochastic processes, to nonlinear field theory in theoretical physics, and to the theory of liquid crystals in materials science. During the past thirty years this subject has been developed extensively. The monograph is by no means intended to give a complete description of the theory of harmonic maps. For example, the book excludes a large part of the theory of harmonic maps from 2-dimensional domains, where the methods are quite different from those discussed here. The first chapter consists of introductory material. Several equivalent definitions of harmonic maps are described, and interesting examples are presented. Various important properties and formulas are derived. Among them are Bochner-type formula for the energy density and the second varia tional formula. This chapter serves not only as a basis for the later chapters, but also as a brief introduction to the theory. Chapter 2 is devoted to the conservation law of harmonic maps. Em phasis is placed on applications of conservation law to the mono tonicity formula and Liouville-type theorems.
Harmonic Maps and Differential Geometry
Title | Harmonic Maps and Differential Geometry PDF eBook |
Author | Eric Loubeau |
Publisher | American Mathematical Soc. |
Pages | 296 |
Release | 2011 |
Genre | Mathematics |
ISBN | 0821849875 |
This volume contains the proceedings of a conference held in Cagliari, Italy, from September 7-10, 2009, to celebrate John C. Wood's 60th birthday. These papers reflect the many facets of the theory of harmonic maps and its links and connections with other topics in Differential and Riemannian Geometry. Two long reports, one on constant mean curvature surfaces by F. Pedit and the other on the construction of harmonic maps by J. C. Wood, open the proceedings. These are followed by a mix of surveys on Prof. Wood's area of expertise: Lagrangian surfaces, biharmonic maps, locally conformally Kahler manifolds and the DDVV conjecture, as well as several research papers on harmonic maps. Other research papers in the volume are devoted to Willmore surfaces, Goldstein-Pedrich flows, contact pairs, prescribed Ricci curvature, conformal fibrations, the Fadeev-Hopf model, the Compact Support Principle and the curvature of surfaces.
Developments of Harmonic Maps, Wave Maps and Yang-Mills Fields into Biharmonic Maps, Biwave Maps and Bi-Yang-Mills Fields
Title | Developments of Harmonic Maps, Wave Maps and Yang-Mills Fields into Biharmonic Maps, Biwave Maps and Bi-Yang-Mills Fields PDF eBook |
Author | Yuan-Jen Chiang |
Publisher | Springer Science & Business Media |
Pages | 418 |
Release | 2013-06-18 |
Genre | Mathematics |
ISBN | 3034805349 |
Harmonic maps between Riemannian manifolds were first established by James Eells and Joseph H. Sampson in 1964. Wave maps are harmonic maps on Minkowski spaces and have been studied since the 1990s. Yang-Mills fields, the critical points of Yang-Mills functionals of connections whose curvature tensors are harmonic, were explored by a few physicists in the 1950s, and biharmonic maps (generalizing harmonic maps) were introduced by Guoying Jiang in 1986. The book presents an overview of the important developments made in these fields since they first came up. Furthermore, it introduces biwave maps (generalizing wave maps) which were first studied by the author in 2009, and bi-Yang-Mills fields (generalizing Yang-Mills fields) first investigated by Toshiyuki Ichiyama, Jun-Ichi Inoguchi and Hajime Urakawa in 2008. Other topics discussed are exponential harmonic maps, exponential wave maps and exponential Yang-Mills fields.