Harmonic Analysis on the Heisenberg Group
Title | Harmonic Analysis on the Heisenberg Group PDF eBook |
Author | Sundaram Thangavelu |
Publisher | Springer Science & Business Media |
Pages | 204 |
Release | 2012-12-06 |
Genre | Mathematics |
ISBN | 1461217725 |
The Heisenberg group plays an important role in several branches of mathematics, such as representation theory, partial differential equations, number theory, several complex variables and quantum mechanics. This monograph deals with various aspects of harmonic analysis on the Heisenberg group, which is the most commutative among the non-commutative Lie groups, and hence gives the greatest opportunity for generalizing the remarkable results of Euclidean harmonic analysis. The aim of this text is to demonstrate how the standard results of abelian harmonic analysis take shape in the non-abelian setup of the Heisenberg group. Thangavelu’s exposition is clear and well developed, and leads to several problems worthy of further consideration. Any reader who is interested in pursuing research on the Heisenberg group will find this unique and self-contained text invaluable.
Harmonic Analysis on the Heisenberg Group
Title | Harmonic Analysis on the Heisenberg Group PDF eBook |
Author | Sundaram Thangavelu |
Publisher | Springer Science & Business Media |
Pages | 212 |
Release | 1998-03-24 |
Genre | Mathematics |
ISBN | 9780817640507 |
This monograph deals with various aspects of harmonic analysis on the Heisenberg group, which is the most commutative among the non-commutative Lie groups, and, hence gives the greatest opportunity for generalizing the remarkable results of Euclidian harmonic analysis.
Explorations in Harmonic Analysis
Title | Explorations in Harmonic Analysis PDF eBook |
Author | Steven G. Krantz |
Publisher | Springer Science & Business Media |
Pages | 367 |
Release | 2009-05-24 |
Genre | Mathematics |
ISBN | 0817646698 |
This self-contained text provides an introduction to modern harmonic analysis in the context in which it is actually applied, in particular, through complex function theory and partial differential equations. It takes the novice mathematical reader from the rudiments of harmonic analysis (Fourier series) to the Fourier transform, pseudodifferential operators, and finally to Heisenberg analysis.
Harmonic Analysis of Mean Periodic Functions on Symmetric Spaces and the Heisenberg Group
Title | Harmonic Analysis of Mean Periodic Functions on Symmetric Spaces and the Heisenberg Group PDF eBook |
Author | Valery V. Volchkov |
Publisher | Springer |
Pages | 0 |
Release | 2011-11-30 |
Genre | Mathematics |
ISBN | 9781447122838 |
The theory of mean periodic functions is a subject which goes back to works of Littlewood, Delsarte, John and that has undergone a vigorous development in recent years. There has been much progress in a number of problems concerning local - pects of spectral analysis and spectral synthesis on homogeneous spaces. The study oftheseproblemsturnsouttobecloselyrelatedtoavarietyofquestionsinharmonic analysis, complex analysis, partial differential equations, integral geometry, appr- imation theory, and other branches of contemporary mathematics. The present book describes recent advances in this direction of research. Symmetric spaces and the Heisenberg group are an active ?eld of investigation at 2 the moment. The simplest examples of symmetric spaces, the classical 2-sphere S 2 and the hyperbolic plane H , play familiar roles in many areas in mathematics. The n Heisenberg groupH is a principal model for nilpotent groups, and results obtained n forH may suggest results that hold more generally for this important class of Lie groups. The purpose of this book is to develop harmonic analysis of mean periodic functions on the above spaces.
Discrete Harmonic Analysis
Title | Discrete Harmonic Analysis PDF eBook |
Author | Tullio Ceccherini-Silberstein |
Publisher | Cambridge University Press |
Pages | 589 |
Release | 2018-06-21 |
Genre | Mathematics |
ISBN | 1107182336 |
A self-contained introduction to discrete harmonic analysis with an emphasis on the Discrete and Fast Fourier Transforms.
Principles of Harmonic Analysis
Title | Principles of Harmonic Analysis PDF eBook |
Author | Anton Deitmar |
Publisher | Springer |
Pages | 330 |
Release | 2014-06-21 |
Genre | Mathematics |
ISBN | 3319057928 |
This book offers a complete and streamlined treatment of the central principles of abelian harmonic analysis: Pontryagin duality, the Plancherel theorem and the Poisson summation formula, as well as their respective generalizations to non-abelian groups, including the Selberg trace formula. The principles are then applied to spectral analysis of Heisenberg manifolds and Riemann surfaces. This new edition contains a new chapter on p-adic and adelic groups, as well as a complementary section on direct and projective limits. Many of the supporting proofs have been revised and refined. The book is an excellent resource for graduate students who wish to learn and understand harmonic analysis and for researchers seeking to apply it.
Harmonic and Applied Analysis
Title | Harmonic and Applied Analysis PDF eBook |
Author | Stephan Dahlke |
Publisher | Birkhäuser |
Pages | 268 |
Release | 2015-09-12 |
Genre | Mathematics |
ISBN | 3319188631 |
This contributed volume explores the connection between the theoretical aspects of harmonic analysis and the construction of advanced multiscale representations that have emerged in signal and image processing. It highlights some of the most promising mathematical developments in harmonic analysis in the last decade brought about by the interplay among different areas of abstract and applied mathematics. This intertwining of ideas is considered starting from the theory of unitary group representations and leading to the construction of very efficient schemes for the analysis of multidimensional data. After an introductory chapter surveying the scientific significance of classical and more advanced multiscale methods, chapters cover such topics as An overview of Lie theory focused on common applications in signal analysis, including the wavelet representation of the affine group, the Schrödinger representation of the Heisenberg group, and the metaplectic representation of the symplectic group An introduction to coorbit theory and how it can be combined with the shearlet transform to establish shearlet coorbit spaces Microlocal properties of the shearlet transform and its ability to provide a precise geometric characterization of edges and interface boundaries in images and other multidimensional data Mathematical techniques to construct optimal data representations for a number of signal types, with a focus on the optimal approximation of functions governed by anisotropic singularities. A unified notation is used across all of the chapters to ensure consistency of the mathematical material presented. Harmonic and Applied Analysis: From Groups to Signals is aimed at graduate students and researchers in the areas of harmonic analysis and applied mathematics, as well as at other applied scientists interested in representations of multidimensional data. It can also be used as a textbook for graduate courses in applied harmonic analysis.