Harmonic Analysis on Symmetric Spaces—Euclidean Space, the Sphere, and the Poincaré Upper Half-Plane

Harmonic Analysis on Symmetric Spaces—Euclidean Space, the Sphere, and the Poincaré Upper Half-Plane
Title Harmonic Analysis on Symmetric Spaces—Euclidean Space, the Sphere, and the Poincaré Upper Half-Plane PDF eBook
Author Audrey Terras
Publisher Springer Science & Business Media
Pages 430
Release 2013-09-12
Genre Mathematics
ISBN 146147972X

Download Harmonic Analysis on Symmetric Spaces—Euclidean Space, the Sphere, and the Poincaré Upper Half-Plane Book in PDF, Epub and Kindle

This unique text is an introduction to harmonic analysis on the simplest symmetric spaces, namely Euclidean space, the sphere, and the Poincaré upper half plane. This book is intended for beginning graduate students in mathematics or researchers in physics or engineering. Written with an informal style, the book places an emphasis on motivation, concrete examples, history, and, above all, applications in mathematics, statistics, physics, and engineering. Many corrections and updates have been incorporated in this new edition. Updates include discussions of P. Sarnak and others' work on quantum chaos, the work of T. Sunada, Marie-France Vignéras, Carolyn Gordon, and others on Mark Kac's question "Can you hear the shape of a drum?", A. Lubotzky, R. Phillips and P. Sarnak's examples of Ramanujan graphs, and, finally, the author's comparisons of continuous theory with the finite analogues. Topics featured throughout the text include inversion formulas for Fourier transforms, central limit theorems, Poisson's summation formula and applications in crystallography and number theory, applications of spherical harmonic analysis to the hydrogen atom, the Radon transform, non-Euclidean geometry on the Poincaré upper half plane H or unit disc and applications to microwave engineering, fundamental domains in H for discrete groups Γ, tessellations of H from such discrete group actions, automorphic forms, and the Selberg trace formula and its applications in spectral theory as well as number theory.

Harmonic Analysis on Symmetric Spaces—Higher Rank Spaces, Positive Definite Matrix Space and Generalizations

Harmonic Analysis on Symmetric Spaces—Higher Rank Spaces, Positive Definite Matrix Space and Generalizations
Title Harmonic Analysis on Symmetric Spaces—Higher Rank Spaces, Positive Definite Matrix Space and Generalizations PDF eBook
Author Audrey Terras
Publisher Springer
Pages 500
Release 2016-04-26
Genre Mathematics
ISBN 1493934082

Download Harmonic Analysis on Symmetric Spaces—Higher Rank Spaces, Positive Definite Matrix Space and Generalizations Book in PDF, Epub and Kindle

This text is an introduction to harmonic analysis on symmetric spaces, focusing on advanced topics such as higher rank spaces, positive definite matrix space and generalizations. It is intended for beginning graduate students in mathematics or researchers in physics or engineering. As with the introductory book entitled "Harmonic Analysis on Symmetric Spaces - Euclidean Space, the Sphere, and the Poincaré Upper Half Plane, the style is informal with an emphasis on motivation, concrete examples, history, and applications. The symmetric spaces considered here are quotients X=G/K, where G is a non-compact real Lie group, such as the general linear group GL(n,P) of all n x n non-singular real matrices, and K=O(n), the maximal compact subgroup of orthogonal matrices. Other examples are Siegel's upper half "plane" and the quaternionic upper half "plane". In the case of the general linear group, one can identify X with the space Pn of n x n positive definite symmetric matrices. Many corrections and updates have been incorporated in this new edition. Updates include discussions of random matrix theory and quantum chaos, as well as recent research on modular forms and their corresponding L-functions in higher rank. Many applications have been added, such as the solution of the heat equation on Pn, the central limit theorem of Donald St. P. Richards for Pn, results on densest lattice packing of spheres in Euclidean space, and GL(n)-analogs of the Weyl law for eigenvalues of the Laplacian in plane domains. Topics featured throughout the text include inversion formulas for Fourier transforms, central limit theorems, fundamental domains in X for discrete groups Γ (such as the modular group GL(n,Z) of n x n matrices with integer entries and determinant ±1), connections with the problem of finding densest lattice packings of spheres in Euclidean space, automorphic forms, Hecke operators, L-functions, and the Selberg trace formula and its applications in spectral theory as well as number theory.

Harmonic Analysis for Engineers and Applied Scientists

Harmonic Analysis for Engineers and Applied Scientists
Title Harmonic Analysis for Engineers and Applied Scientists PDF eBook
Author Gregory S. Chirikjian
Publisher Courier Dover Publications
Pages 881
Release 2016-07-20
Genre Mathematics
ISBN 0486795640

Download Harmonic Analysis for Engineers and Applied Scientists Book in PDF, Epub and Kindle

Although the Fourier transform is among engineering's most widely used mathematical tools, few engineers realize that the extension of harmonic analysis to functions on groups holds great potential for solving problems in robotics, image analysis, mechanics, and other areas. This self-contained approach, geared toward readers with a standard background in engineering mathematics, explores the widest possible range of applications to fields such as robotics, mechanics, tomography, sensor calibration, estimation and control, liquid crystal analysis, and conformational statistics of macromolecules. Harmonic analysis is explored in terms of particular Lie groups, and the text deals with only a limited number of proofs, focusing instead on specific applications and fundamental mathematical results. Forming a bridge between pure mathematics and the challenges of modern engineering, this updated and expanded volume offers a concrete, accessible treatment that places the general theory in the context of specific groups.

Fourier Series, Fourier Transforms, and Function Spaces: A Second Course in Analysis

Fourier Series, Fourier Transforms, and Function Spaces: A Second Course in Analysis
Title Fourier Series, Fourier Transforms, and Function Spaces: A Second Course in Analysis PDF eBook
Author Tim Hsu
Publisher American Mathematical Soc.
Pages 371
Release 2020-02-10
Genre Education
ISBN 147045145X

Download Fourier Series, Fourier Transforms, and Function Spaces: A Second Course in Analysis Book in PDF, Epub and Kindle

Fourier Series, Fourier Transforms, and Function Spaces is designed as a textbook for a second course or capstone course in analysis for advanced undergraduate or beginning graduate students. By assuming the existence and properties of the Lebesgue integral, this book makes it possible for students who have previously taken only one course in real analysis to learn Fourier analysis in terms of Hilbert spaces, allowing for both a deeper and more elegant approach. This approach also allows junior and senior undergraduates to study topics like PDEs, quantum mechanics, and signal processing in a rigorous manner. Students interested in statistics (time series), machine learning (kernel methods), mathematical physics (quantum mechanics), or electrical engineering (signal processing) will find this book useful. With 400 problems, many of which guide readers in developing key theoretical concepts themselves, this text can also be adapted to self-study or an inquiry-based approach. Finally, of course, this text can also serve as motivation and preparation for students going on to further study in analysis.

Fourier Series, Fourier Transforms, and Function Spaces

Fourier Series, Fourier Transforms, and Function Spaces
Title Fourier Series, Fourier Transforms, and Function Spaces PDF eBook
Author Tim Hsu
Publisher American Mathematical Society
Pages 370
Release 2023-12-07
Genre Mathematics
ISBN 1470476002

Download Fourier Series, Fourier Transforms, and Function Spaces Book in PDF, Epub and Kindle

Fourier Series, Fourier Transforms, and Function Spaces is designed as a textbook for a second course or capstone course in analysis for advanced undergraduate or beginning graduate students. By assuming the existence and properties of the Lebesgue integral, this book makes it possible for students who have previously taken only one course in real analysis to learn Fourier analysis in terms of Hilbert spaces, allowing for both a deeper and more elegant approach. This approach also allows junior and senior undergraduates to study topics like PDEs, quantum mechanics, and signal processing in a rigorous manner. Students interested in statistics (time series), machine learning (kernel methods), mathematical physics (quantum mechanics), or electrical engineering (signal processing) will find this book useful. With 400 problems, many of which guide readers in developing key theoretical concepts themselves, this text can also be adapted to self-study or an inquiry-based approach. Finally, of course, this text can also serve as motivation and preparation for students going on to further study in analysis.

Real and Functional Analysis

Real and Functional Analysis
Title Real and Functional Analysis PDF eBook
Author Vladimir I. Bogachev
Publisher Springer Nature
Pages 602
Release 2020-02-25
Genre Mathematics
ISBN 3030382192

Download Real and Functional Analysis Book in PDF, Epub and Kindle

This book is based on lectures given at "Mekhmat", the Department of Mechanics and Mathematics at Moscow State University, one of the top mathematical departments worldwide, with a rich tradition of teaching functional analysis. Featuring an advanced course on real and functional analysis, the book presents not only core material traditionally included in university courses of different levels, but also a survey of the most important results of a more subtle nature, which cannot be considered basic but which are useful for applications. Further, it includes several hundred exercises of varying difficulty with tips and references. The book is intended for graduate and PhD students studying real and functional analysis as well as mathematicians and physicists whose research is related to functional analysis.

Handbook of Complex Analysis

Handbook of Complex Analysis
Title Handbook of Complex Analysis PDF eBook
Author Steven G. Krantz
Publisher CRC Press
Pages 547
Release 2022-03-07
Genre Mathematics
ISBN 1351663062

Download Handbook of Complex Analysis Book in PDF, Epub and Kindle

In spite of being nearly 500 years old, the subject of complex analysis is still today a vital and active part of mathematics. There are important applications in physics, engineering, and other aspects of technology. This Handbook presents contributed chapters by prominent mathematicians, including the new generation of researchers. More than a compilation of recent results, this book offers students an essential stepping-stone to gain an entry into the research life of complex analysis. Classes and seminars play a role in this process. More, though, is needed for further study. This Handbook will play that role. This book is also a reference and a source of inspiration for more seasoned mathematicians—both specialists in complex analysis and others who want to acquaint themselves with current modes of thought. The chapters in this volume are authored by leading experts and gifted expositors. They are carefully crafted presentations of diverse aspects of the field, formulated for a broad and diverse audience. This volume is a touchstone for current ideas in the broadly construed subject area of complex analysis. It should enrich the literature and point in some new directions.