Harmonic Analysis in Phase Space. (AM-122), Volume 122

Harmonic Analysis in Phase Space. (AM-122), Volume 122
Title Harmonic Analysis in Phase Space. (AM-122), Volume 122 PDF eBook
Author Gerald B. Folland
Publisher Princeton University Press
Pages 288
Release 2016-03-02
Genre Mathematics
ISBN 1400882427

Download Harmonic Analysis in Phase Space. (AM-122), Volume 122 Book in PDF, Epub and Kindle

This book provides the first coherent account of the area of analysis that involves the Heisenberg group, quantization, the Weyl calculus, the metaplectic representation, wave packets, and related concepts. This circle of ideas comes principally from mathematical physics, partial differential equations, and Fourier analysis, and it illuminates all these subjects. The principal features of the book are as follows: a thorough treatment of the representations of the Heisenberg group, their associated integral transforms, and the metaplectic representation; an exposition of the Weyl calculus of pseudodifferential operators, with emphasis on ideas coming from harmonic analysis and physics; a discussion of wave packet transforms and their applications; and a new development of Howe's theory of the oscillator semigroup.

Harmonic Analysis in Phase Space

Harmonic Analysis in Phase Space
Title Harmonic Analysis in Phase Space PDF eBook
Author G. B. Folland
Publisher Princeton University Press
Pages 292
Release 1989-03-21
Genre Mathematics
ISBN 9780691085289

Download Harmonic Analysis in Phase Space Book in PDF, Epub and Kindle

This book provides the first coherent account of the area of analysis that involves the Heisenberg group, quantization, the Weyl calculus, the metaplectic representation, wave packets, and related concepts. This circle of ideas comes principally from mathematical physics, partial differential equations, and Fourier analysis, and it illuminates all these subjects. The principal features of the book are as follows: a thorough treatment of the representations of the Heisenberg group, their associated integral transforms, and the metaplectic representation; an exposition of the Weyl calculus of pseudodifferential operators, with emphasis on ideas coming from harmonic analysis and physics; a discussion of wave packet transforms and their applications; and a new development of Howe's theory of the oscillator semigroup.

Quantum Harmonic Analysis

Quantum Harmonic Analysis
Title Quantum Harmonic Analysis PDF eBook
Author Maurice A. de Gosson
Publisher Walter de Gruyter GmbH & Co KG
Pages 247
Release 2021-07-05
Genre Mathematics
ISBN 3110722909

Download Quantum Harmonic Analysis Book in PDF, Epub and Kindle

Quantum mechanics is arguably one of the most successful scientific theories ever and its applications to chemistry, optics, and information theory are innumerable. This book provides the reader with a rigorous treatment of the main mathematical tools from harmonic analysis which play an essential role in the modern formulation of quantum mechanics. This allows us at the same time to suggest some new ideas and methods, with a special focus on topics such as the Wigner phase space formalism and its applications to the theory of the density operator and its entanglement properties. This book can be used with profit by advanced undergraduate students in mathematics and physics, as well as by confirmed researchers.

Symplectic Methods in Harmonic Analysis and in Mathematical Physics

Symplectic Methods in Harmonic Analysis and in Mathematical Physics
Title Symplectic Methods in Harmonic Analysis and in Mathematical Physics PDF eBook
Author Maurice A. de Gosson
Publisher Springer Science & Business Media
Pages 351
Release 2011-07-30
Genre Mathematics
ISBN 3764399929

Download Symplectic Methods in Harmonic Analysis and in Mathematical Physics Book in PDF, Epub and Kindle

The aim of this book is to give a rigorous and complete treatment of various topics from harmonic analysis with a strong emphasis on symplectic invariance properties, which are often ignored or underestimated in the time-frequency literature. The topics that are addressed include (but are not limited to) the theory of the Wigner transform, the uncertainty principle (from the point of view of symplectic topology), Weyl calculus and its symplectic covariance, Shubin’s global theory of pseudo-differential operators, and Feichtinger’s theory of modulation spaces. Several applications to time-frequency analysis and quantum mechanics are given, many of them concurrent with ongoing research. For instance, a non-standard pseudo-differential calculus on phase space where the main role is played by “Bopp operators” (also called “Landau operators” in the literature) is introduced and studied. This calculus is closely related to both the Landau problem and to the deformation quantization theory of Flato and Sternheimer, of which it gives a simple pseudo-differential formulation where Feichtinger’s modulation spaces are key actors. This book is primarily directed towards students or researchers in harmonic analysis (in the broad sense) and towards mathematical physicists working in quantum mechanics. It can also be read with profit by researchers in time-frequency analysis, providing a valuable complement to the existing literature on the topic. A certain familiarity with Fourier analysis (in the broad sense) and introductory functional analysis (e.g. the elementary theory of distributions) is assumed. Otherwise, the book is largely self-contained and includes an extensive list of references.

Harmonic Analysis of Mean Periodic Functions on Symmetric Spaces and the Heisenberg Group

Harmonic Analysis of Mean Periodic Functions on Symmetric Spaces and the Heisenberg Group
Title Harmonic Analysis of Mean Periodic Functions on Symmetric Spaces and the Heisenberg Group PDF eBook
Author Valery V. Volchkov
Publisher Springer
Pages 0
Release 2011-11-30
Genre Mathematics
ISBN 9781447122838

Download Harmonic Analysis of Mean Periodic Functions on Symmetric Spaces and the Heisenberg Group Book in PDF, Epub and Kindle

The theory of mean periodic functions is a subject which goes back to works of Littlewood, Delsarte, John and that has undergone a vigorous development in recent years. There has been much progress in a number of problems concerning local - pects of spectral analysis and spectral synthesis on homogeneous spaces. The study oftheseproblemsturnsouttobecloselyrelatedtoavarietyofquestionsinharmonic analysis, complex analysis, partial differential equations, integral geometry, appr- imation theory, and other branches of contemporary mathematics. The present book describes recent advances in this direction of research. Symmetric spaces and the Heisenberg group are an active ?eld of investigation at 2 the moment. The simplest examples of symmetric spaces, the classical 2-sphere S 2 and the hyperbolic plane H , play familiar roles in many areas in mathematics. The n Heisenberg groupH is a principal model for nilpotent groups, and results obtained n forH may suggest results that hold more generally for this important class of Lie groups. The purpose of this book is to develop harmonic analysis of mean periodic functions on the above spaces.

Lectures on Harmonic Analysis

Lectures on Harmonic Analysis
Title Lectures on Harmonic Analysis PDF eBook
Author Thomas H. Wolff
Publisher American Mathematical Soc.
Pages 154
Release 2003-09-17
Genre Mathematics
ISBN 0821834495

Download Lectures on Harmonic Analysis Book in PDF, Epub and Kindle

This book demonstrates how harmonic analysis can provide penetrating insights into deep aspects of modern analysis. It is both an introduction to the subject as a whole and an overview of those branches of harmonic analysis that are relevant to the Kakeya conjecture. The usual background material is covered in the first few chapters: the Fourier transform, convolution, the inversion theorem, the uncertainty principle and the method of stationary phase. However, the choice of topics is highly selective, with emphasis on those frequently used in research inspired by the problems discussed in the later chapters. These include questions related to the restriction conjecture and the Kakeya conjecture, distance sets, and Fourier transforms of singular measures. These problems are diverse, but often interconnected; they all combine sophisticated Fourier analysis with intriguing links to other areas of mathematics and they continue to stimulate first-rate work. The book focuses on laying out a solid foundation for further reading and research. Technicalities are kept to a minimum, and simpler but more basic methods are often favored over the most recent methods. The clear style of the exposition and the quick progression from fundamentals to advanced topics ensures that both graduate students and research mathematicians will benefit from the book.

A Comprehensive Course in Analysis

A Comprehensive Course in Analysis
Title A Comprehensive Course in Analysis PDF eBook
Author Barry Simon
Publisher
Pages 749
Release 2015
Genre Mathematical analysis
ISBN 9781470411039

Download A Comprehensive Course in Analysis Book in PDF, Epub and Kindle

A Comprehensive Course in Analysis by Poincar Prize winner Barry Simon is a five-volume set that can serve as a graduate-level analysis textbook with a lot of additional bonus information, including hundreds of problems and numerous notes that extend the text and provide important historical background. Depth and breadth of exposition make this set a valuable reference source for almost all areas of classical analysis