Introduction to Hamiltonian Dynamical Systems and the N-Body Problem

Introduction to Hamiltonian Dynamical Systems and the N-Body Problem
Title Introduction to Hamiltonian Dynamical Systems and the N-Body Problem PDF eBook
Author Kenneth R. Meyer
Publisher Springer
Pages 389
Release 2017-05-04
Genre Mathematics
ISBN 3319536915

Download Introduction to Hamiltonian Dynamical Systems and the N-Body Problem Book in PDF, Epub and Kindle

This third edition text provides expanded material on the restricted three body problem and celestial mechanics. With each chapter containing new content, readers are provided with new material on reduction, orbifolds, and the regularization of the Kepler problem, all of which are provided with applications. The previous editions grew out of graduate level courses in mathematics, engineering, and physics given at several different universities. The courses took students who had some background in differential equations and lead them through a systematic grounding in the theory of Hamiltonian mechanics from a dynamical systems point of view. This text provides a mathematical structure of celestial mechanics ideal for beginners, and will be useful to graduate students and researchers alike. Reviews of the second edition: "The primary subject here is the basic theory of Hamiltonian differential equations studied from the perspective of differential dynamical systems. The N-body problem is used as the primary example of a Hamiltonian system, a touchstone for the theory as the authors develop it. This book is intended to support a first course at the graduate level for mathematics and engineering students. ... It is a well-organized and accessible introduction to the subject ... . This is an attractive book ... ." (William J. Satzer, The Mathematical Association of America, March, 2009) “The second edition of this text infuses new mathematical substance and relevance into an already modern classic ... and is sure to excite future generations of readers. ... This outstanding book can be used not only as an introductory course at the graduate level in mathematics, but also as course material for engineering graduate students. ... it is an elegant and invaluable reference for mathematicians and scientists with an interest in classical and celestial mechanics, astrodynamics, physics, biology, and related fields.” (Marian Gidea, Mathematical Reviews, Issue 2010 d)

The Hamiltonian

The Hamiltonian
Title The Hamiltonian PDF eBook
Author
Publisher
Pages 844
Release 1917
Genre United States
ISBN

Download The Hamiltonian Book in PDF, Epub and Kindle

Linear Port-Hamiltonian Systems on Infinite-dimensional Spaces

Linear Port-Hamiltonian Systems on Infinite-dimensional Spaces
Title Linear Port-Hamiltonian Systems on Infinite-dimensional Spaces PDF eBook
Author Birgit Jacob
Publisher Springer Science & Business Media
Pages 221
Release 2012-06-13
Genre Science
ISBN 3034803990

Download Linear Port-Hamiltonian Systems on Infinite-dimensional Spaces Book in PDF, Epub and Kindle

This book provides a self-contained introduction to the theory of infinite-dimensional systems theory and its applications to port-Hamiltonian systems. The textbook starts with elementary known results, then progresses smoothly to advanced topics in current research. Many physical systems can be formulated using a Hamiltonian framework, leading to models described by ordinary or partial differential equations. For the purpose of control and for the interconnection of two or more Hamiltonian systems it is essential to take into account this interaction with the environment. This book is the first textbook on infinite-dimensional port-Hamiltonian systems. An abstract functional analytical approach is combined with the physical approach to Hamiltonian systems. This combined approach leads to easily verifiable conditions for well-posedness and stability. The book is accessible to graduate engineers and mathematicians with a minimal background in functional analysis. Moreover, the theory is illustrated by many worked-out examples.

Hamiltonian Mechanical Systems and Geometric Quantization

Hamiltonian Mechanical Systems and Geometric Quantization
Title Hamiltonian Mechanical Systems and Geometric Quantization PDF eBook
Author Mircea Puta
Publisher Springer Science & Business Media
Pages 289
Release 2012-12-06
Genre Mathematics
ISBN 9401119929

Download Hamiltonian Mechanical Systems and Geometric Quantization Book in PDF, Epub and Kindle

This volume presents various aspects of the geometry of symplectic and Poisson manifolds, and applications in Hamiltonian mechanics and geometric quantization are indicated. Chapter 1 presents some general facts about symplectic vector space, symplectic manifolds and symplectic reduction. Chapter 2 deals with the study of Hamiltonian mechanics. Chapter 3 considers some standard facts concerning Lie groups and algebras which lead to the theory of momentum mappings and the Marsden--Weinstein reduction. Chapters 4 and 5 consider the theory and the stability of equilibrium solutions of Hamilton--Poisson mechanical systems. Chapters 6 and 7 are devoted to the theory of geometric quantization. This leads, in Chapter 8, to topics such as foliated cohomology, the theory of the Dolbeault--Kostant complex, and their applications. A discussion of the relation between geometric quantization and the Marsden--Weinstein reduction is presented in Chapter 9. The final chapter considers extending the theory of geometric quantization to Poisson manifolds, via the theory of symplectic groupoids. Each chapter concludes with problems and solutions, many of which present significant applications and, in some cases, major theorems. For graduate students and researchers whose interests and work involve symplectic geometry and Hamiltonian mechanics.

Path Integrals and Hamiltonians

Path Integrals and Hamiltonians
Title Path Integrals and Hamiltonians PDF eBook
Author Belal E. Baaquie
Publisher Cambridge University Press
Pages 437
Release 2014-03-27
Genre Science
ISBN 1139867334

Download Path Integrals and Hamiltonians Book in PDF, Epub and Kindle

Providing a pedagogical introduction to the essential principles of path integrals and Hamiltonians, this book describes cutting-edge quantum mathematical techniques applicable to a vast range of fields, from quantum mechanics, solid state physics, statistical mechanics, quantum field theory, and superstring theory to financial modeling, polymers, biology, chemistry, and quantum finance. Eschewing use of the Schrödinger equation, the powerful and flexible combination of Hamiltonian operators and path integrals is used to study a range of different quantum and classical random systems, succinctly demonstrating the interplay between a system's path integral, state space, and Hamiltonian. With a practical emphasis on the methodological and mathematical aspects of each derivation, this is a perfect introduction to these versatile mathematical methods, suitable for researchers and graduate students in physics and engineering.

Lagrangian And Hamiltonian Mechanics: Solutions To The Exercises

Lagrangian And Hamiltonian Mechanics: Solutions To The Exercises
Title Lagrangian And Hamiltonian Mechanics: Solutions To The Exercises PDF eBook
Author Melvin G Calkin
Publisher World Scientific Publishing Company
Pages 240
Release 1999-03-12
Genre Science
ISBN 9813105410

Download Lagrangian And Hamiltonian Mechanics: Solutions To The Exercises Book in PDF, Epub and Kindle

This book contains the exercises from the classical mechanics text Lagrangian and Hamiltonian Mechanics, together with their complete solutions. It is intended primarily for instructors who are using Lagrangian and Hamiltonian Mechanics in their course, but it may also be used, together with that text, by those who are studying mechanics on their own.

Hamiltonian Dynamics

Hamiltonian Dynamics
Title Hamiltonian Dynamics PDF eBook
Author Gaetano Vilasi
Publisher World Scientific
Pages 457
Release 2001-03-09
Genre Science
ISBN 9814496731

Download Hamiltonian Dynamics Book in PDF, Epub and Kindle

This is both a textbook and a monograph. It is partially based on a two-semester course, held by the author for third-year students in physics and mathematics at the University of Salerno, on analytical mechanics, differential geometry, symplectic manifolds and integrable systems.As a textbook, it provides a systematic and self-consistent formulation of Hamiltonian dynamics both in a rigorous coordinate language and in the modern language of differential geometry. It also presents powerful mathematical methods of theoretical physics, especially in gauge theories and general relativity.As a monograph, the book deals with the advanced research topic of completely integrable dynamics, with both finitely and infinitely many degrees of freedom, including geometrical structures of solitonic wave equations.