The Global Theory of Minimal Surfaces in Flat Spaces

The Global Theory of Minimal Surfaces in Flat Spaces
Title The Global Theory of Minimal Surfaces in Flat Spaces PDF eBook
Author William Meeks
Publisher Springer Science & Business Media
Pages 136
Release 2002-03-25
Genre Education
ISBN 9783540431206

Download The Global Theory of Minimal Surfaces in Flat Spaces Book in PDF, Epub and Kindle

In the second half of the twentieth century the global theory of minimal surface in flat space had an unexpected and rapid blossoming. Some of the classical problems were solved and new classes of minimal surfaces found. Minimal surfaces are now studied from several different viewpoints using methods and techniques from analysis (real and complex), topology and geometry. In this lecture course, Meeks, Ros and Rosenberg, three of the main architects of the modern edifice, present some of the more recent methods and developments of the theory. The topics include moduli, asymptotic geometry and surfaces of constant mean curvature in the hyperbolic space.

Minimal Surfaces from a Complex Analytic Viewpoint

Minimal Surfaces from a Complex Analytic Viewpoint
Title Minimal Surfaces from a Complex Analytic Viewpoint PDF eBook
Author Antonio Alarcón
Publisher Springer Nature
Pages 430
Release 2021-03-10
Genre Mathematics
ISBN 3030690563

Download Minimal Surfaces from a Complex Analytic Viewpoint Book in PDF, Epub and Kindle

This monograph offers the first systematic treatment of the theory of minimal surfaces in Euclidean spaces by complex analytic methods, many of which have been developed in recent decades as part of the theory of Oka manifolds (the h-principle in complex analysis). It places particular emphasis on the study of the global theory of minimal surfaces with a given complex structure. Advanced methods of holomorphic approximation, interpolation, and homotopy classification of manifold-valued maps, along with elements of convex integration theory, are implemented for the first time in the theory of minimal surfaces. The text also presents newly developed methods for constructing minimal surfaces in minimally convex domains of Rn, based on the Riemann–Hilbert boundary value problem adapted to minimal surfaces and holomorphic null curves. These methods also provide major advances in the classical Calabi–Yau problem, yielding in particular minimal surfaces with the conformal structure of any given bordered Riemann surface. Offering new directions in the field and several challenging open problems, the primary audience of the book are researchers (including postdocs and PhD students) in differential geometry and complex analysis. Although not primarily intended as a textbook, two introductory chapters surveying background material and the classical theory of minimal surfaces also make it suitable for preparing Masters or PhD level courses.

A Course in Minimal Surfaces

A Course in Minimal Surfaces
Title A Course in Minimal Surfaces PDF eBook
Author Tobias Holck Colding
Publisher American Mathematical Society
Pages 330
Release 2024-01-18
Genre Mathematics
ISBN 1470476401

Download A Course in Minimal Surfaces Book in PDF, Epub and Kindle

Minimal surfaces date back to Euler and Lagrange and the beginning of the calculus of variations. Many of the techniques developed have played key roles in geometry and partial differential equations. Examples include monotonicity and tangent cone analysis originating in the regularity theory for minimal surfaces, estimates for nonlinear equations based on the maximum principle arising in Bernstein's classical work, and even Lebesgue's definition of the integral that he developed in his thesis on the Plateau problem for minimal surfaces. This book starts with the classical theory of minimal surfaces and ends up with current research topics. Of the various ways of approaching minimal surfaces (from complex analysis, PDE, or geometric measure theory), the authors have chosen to focus on the PDE aspects of the theory. The book also contains some of the applications of minimal surfaces to other fields including low dimensional topology, general relativity, and materials science. The only prerequisites needed for this book are a basic knowledge of Riemannian geometry and some familiarity with the maximum principle.

The Global Theory of Minimal Surfaces in Flat Spaces

The Global Theory of Minimal Surfaces in Flat Spaces
Title The Global Theory of Minimal Surfaces in Flat Spaces PDF eBook
Author W.H. III Meeks
Publisher Springer
Pages 126
Release 2004-10-11
Genre Mathematics
ISBN 3540456090

Download The Global Theory of Minimal Surfaces in Flat Spaces Book in PDF, Epub and Kindle

In the second half of the twentieth century the global theory of minimal surface in flat space had an unexpected and rapid blossoming. Some of the classical problems were solved and new classes of minimal surfaces found. Minimal surfaces are now studied from several different viewpoints using methods and techniques from analysis (real and complex), topology and geometry. In this lecture course, Meeks, Ros and Rosenberg, three of the main architects of the modern edifice, present some of the more recent methods and developments of the theory. The topics include moduli, asymptotic geometry and surfaces of constant mean curvature in the hyperbolic space.

Global Theory of Minimal Surfaces

Global Theory of Minimal Surfaces
Title Global Theory of Minimal Surfaces PDF eBook
Author David Hoffman
Publisher
Pages 0
Release 2005
Genre
ISBN 9780821835876

Download Global Theory of Minimal Surfaces Book in PDF, Epub and Kindle

Fully Nonlinear Elliptic Equations

Fully Nonlinear Elliptic Equations
Title Fully Nonlinear Elliptic Equations PDF eBook
Author Luis A. Caffarelli
Publisher American Mathematical Soc.
Pages 114
Release 1995
Genre Mathematics
ISBN 0821804375

Download Fully Nonlinear Elliptic Equations Book in PDF, Epub and Kindle

The goal of the book is to extend classical regularity theorems for solutions of linear elliptic partial differential equations to the context of fully nonlinear elliptic equations. This class of equations often arises in control theory, optimization, and other applications. The authors give a detailed presentation of all the necessary techniques. Instead of treating these techniques in their greatest generality, they outline the key ideas and prove the results needed for developing the subsequent theory. Topics discussed in the book include the theory of viscosity solutions for nonlinear equations, the Alexandroff estimate and Krylov-Safonov Harnack-type inequality for viscosity solutions, uniqueness theory for viscosity solutions, Evans and Krylov regularity theory for convex fully nonlinear equations, and regularity theory for fully nonlinear equations with variable coefficients.

Surfaces with Constant Mean Curvature

Surfaces with Constant Mean Curvature
Title Surfaces with Constant Mean Curvature PDF eBook
Author Katsuei Kenmotsu
Publisher American Mathematical Soc.
Pages 156
Release 2003
Genre Mathematics
ISBN 9780821834794

Download Surfaces with Constant Mean Curvature Book in PDF, Epub and Kindle

The mean curvature of a surface is an extrinsic parameter measuring how the surface is curved in the three-dimensional space. A surface whose mean curvature is zero at each point is a minimal surface, and it is known that such surfaces are models for soap film. There is a rich and well-known theory of minimal surfaces. A surface whose mean curvature is constant but nonzero is obtained when we try to minimize the area of a closed surface without changing the volume it encloses. An easy example of a surface of constant mean curvature is the sphere. A nontrivial example is provided by the constant curvature torus, whose discovery in 1984 gave a powerful incentive for studying such surfaces. Later, many examples of constant mean curvature surfaces were discovered using various methods of analysis, differential geometry, and differential equations. It is now becoming clear that there is a rich theory of surfaces of constant mean curvature. In this book, the author presents numerous examples of constant mean curvature surfaces and techniques for studying them. Many finely rendered figures illustrate the results and allow the reader to visualize and better understand these beautiful objects. The book is suitable for advanced undergraduates, graduate students and research mathematicians interested in analysis and differential geometry.