The Global Theory of Minimal Surfaces in Flat Spaces

The Global Theory of Minimal Surfaces in Flat Spaces
Title The Global Theory of Minimal Surfaces in Flat Spaces PDF eBook
Author William Meeks
Publisher Springer Science & Business Media
Pages 136
Release 2002-03-25
Genre Education
ISBN 9783540431206

Download The Global Theory of Minimal Surfaces in Flat Spaces Book in PDF, Epub and Kindle

In the second half of the twentieth century the global theory of minimal surface in flat space had an unexpected and rapid blossoming. Some of the classical problems were solved and new classes of minimal surfaces found. Minimal surfaces are now studied from several different viewpoints using methods and techniques from analysis (real and complex), topology and geometry. In this lecture course, Meeks, Ros and Rosenberg, three of the main architects of the modern edifice, present some of the more recent methods and developments of the theory. The topics include moduli, asymptotic geometry and surfaces of constant mean curvature in the hyperbolic space.

Global Analysis of Minimal Surfaces

Global Analysis of Minimal Surfaces
Title Global Analysis of Minimal Surfaces PDF eBook
Author Ulrich Dierkes
Publisher Springer Science & Business Media
Pages 547
Release 2010-08-16
Genre Mathematics
ISBN 3642117066

Download Global Analysis of Minimal Surfaces Book in PDF, Epub and Kindle

Many properties of minimal surfaces are of a global nature, and this is already true for the results treated in the first two volumes of the treatise. Part I of the present book can be viewed as an extension of these results. For instance, the first two chapters deal with existence, regularity and uniqueness theorems for minimal surfaces with partially free boundaries. Here one of the main features is the possibility of "edge-crawling" along free parts of the boundary. The third chapter deals with a priori estimates for minimal surfaces in higher dimensions and for minimizers of singular integrals related to the area functional. In particular, far reaching Bernstein theorems are derived. The second part of the book contains what one might justly call a "global theory of minimal surfaces" as envisioned by Smale. First, the Douglas problem is treated anew by using Teichmüller theory. Secondly, various index theorems for minimal theorems are derived, and their consequences for the space of solutions to Plateau ́s problem are discussed. Finally, a topological approach to minimal surfaces via Fredholm vector fields in the spirit of Smale is presented.

Minimal Surfaces from a Complex Analytic Viewpoint

Minimal Surfaces from a Complex Analytic Viewpoint
Title Minimal Surfaces from a Complex Analytic Viewpoint PDF eBook
Author Antonio Alarcón
Publisher Springer Nature
Pages 430
Release 2021-03-10
Genre Mathematics
ISBN 3030690563

Download Minimal Surfaces from a Complex Analytic Viewpoint Book in PDF, Epub and Kindle

This monograph offers the first systematic treatment of the theory of minimal surfaces in Euclidean spaces by complex analytic methods, many of which have been developed in recent decades as part of the theory of Oka manifolds (the h-principle in complex analysis). It places particular emphasis on the study of the global theory of minimal surfaces with a given complex structure. Advanced methods of holomorphic approximation, interpolation, and homotopy classification of manifold-valued maps, along with elements of convex integration theory, are implemented for the first time in the theory of minimal surfaces. The text also presents newly developed methods for constructing minimal surfaces in minimally convex domains of Rn, based on the Riemann–Hilbert boundary value problem adapted to minimal surfaces and holomorphic null curves. These methods also provide major advances in the classical Calabi–Yau problem, yielding in particular minimal surfaces with the conformal structure of any given bordered Riemann surface. Offering new directions in the field and several challenging open problems, the primary audience of the book are researchers (including postdocs and PhD students) in differential geometry and complex analysis. Although not primarily intended as a textbook, two introductory chapters surveying background material and the classical theory of minimal surfaces also make it suitable for preparing Masters or PhD level courses.

A Course in Minimal Surfaces

A Course in Minimal Surfaces
Title A Course in Minimal Surfaces PDF eBook
Author Tobias Holck Colding
Publisher American Mathematical Society
Pages 330
Release 2024-01-18
Genre Mathematics
ISBN 1470476401

Download A Course in Minimal Surfaces Book in PDF, Epub and Kindle

Minimal surfaces date back to Euler and Lagrange and the beginning of the calculus of variations. Many of the techniques developed have played key roles in geometry and partial differential equations. Examples include monotonicity and tangent cone analysis originating in the regularity theory for minimal surfaces, estimates for nonlinear equations based on the maximum principle arising in Bernstein's classical work, and even Lebesgue's definition of the integral that he developed in his thesis on the Plateau problem for minimal surfaces. This book starts with the classical theory of minimal surfaces and ends up with current research topics. Of the various ways of approaching minimal surfaces (from complex analysis, PDE, or geometric measure theory), the authors have chosen to focus on the PDE aspects of the theory. The book also contains some of the applications of minimal surfaces to other fields including low dimensional topology, general relativity, and materials science. The only prerequisites needed for this book are a basic knowledge of Riemannian geometry and some familiarity with the maximum principle.

Geometry V

Geometry V
Title Geometry V PDF eBook
Author Robert Osserman
Publisher Springer Science & Business Media
Pages 300
Release 1997-10-09
Genre Mathematics
ISBN 9783540605232

Download Geometry V Book in PDF, Epub and Kindle

Few people outside of mathematics are aware of the varieties of mathemat ical experience - the degree to which different mathematical subjects have different and distinctive flavors, often attractive to some mathematicians and repellant to others. The particular flavor of the subject of minimal surfaces seems to lie in a combination of the concreteness of the objects being studied, their origin and relation to the physical world, and the way they lie at the intersection of so many different parts of mathematics. In the past fifteen years a new component has been added: the availability of computer graphics to provide illustrations that are both mathematically instructive and esthetically pleas ing. During the course of the twentieth century, two major thrusts have played a seminal role in the evolution of minimal surface theory. The first is the work on the Plateau Problem, whose initial phase culminated in the solution for which Jesse Douglas was awarded one of the first two Fields Medals in 1936. (The other Fields Medal that year went to Lars V. Ahlfors for his contributions to complex analysis, including his important new insights in Nevanlinna Theory.) The second was the innovative approach to partial differential equations by Serge Bernstein, which led to the celebrated Bernstein's Theorem, stating that the only solution to the minimal surface equation over the whole plane is the trivial solution: a linear function.

Dirichlet's Principle, Conformal Mapping, and Minimal Surfaces

Dirichlet's Principle, Conformal Mapping, and Minimal Surfaces
Title Dirichlet's Principle, Conformal Mapping, and Minimal Surfaces PDF eBook
Author Richard Courant
Publisher Courier Corporation
Pages 354
Release 2005-01-01
Genre Mathematics
ISBN 0486445526

Download Dirichlet's Principle, Conformal Mapping, and Minimal Surfaces Book in PDF, Epub and Kindle

Originally published: New York: Interscience Publishers, 1950, in series: Pure and applied mathematics (Interscience Publishers); v. 3.

Global Analysis

Global Analysis
Title Global Analysis PDF eBook
Author Ilka Agricola
Publisher American Mathematical Soc.
Pages 362
Release 2002
Genre Mathematics
ISBN 0821829513

Download Global Analysis Book in PDF, Epub and Kindle

The final third of the book applies the mathematical ideas to important areas of physics: Hamiltonian mechanics, statistical mechanics, and electrodynamics." "There are many classroom-tested exercises and examples with excellent figures throughout. The book is ideal as a text for a first course in differential geometry, suitable for advanced undergraduates or graduate students in mathematics or physics."--BOOK JACKET.