Geometry and Topology of Manifolds: Surfaces and Beyond

Geometry and Topology of Manifolds: Surfaces and Beyond
Title Geometry and Topology of Manifolds: Surfaces and Beyond PDF eBook
Author Vicente Muñoz
Publisher American Mathematical Soc.
Pages 408
Release 2020-10-21
Genre Education
ISBN 1470461323

Download Geometry and Topology of Manifolds: Surfaces and Beyond Book in PDF, Epub and Kindle

This book represents a novel approach to differential topology. Its main focus is to give a comprehensive introduction to the classification of manifolds, with special attention paid to the case of surfaces, for which the book provides a complete classification from many points of view: topological, smooth, constant curvature, complex, and conformal. Each chapter briefly revisits basic results usually known to graduate students from an alternative perspective, focusing on surfaces. We provide full proofs of some remarkable results that sometimes are missed in basic courses (e.g., the construction of triangulations on surfaces, the classification of surfaces, the Gauss-Bonnet theorem, the degree-genus formula for complex plane curves, the existence of constant curvature metrics on conformal surfaces), and we give hints to questions about higher dimensional manifolds. Many examples and remarks are scattered through the book. Each chapter ends with an exhaustive collection of problems and a list of topics for further study. The book is primarily addressed to graduate students who did take standard introductory courses on algebraic topology, differential and Riemannian geometry, or algebraic geometry, but have not seen their deep interconnections, which permeate a modern approach to geometry and topology of manifolds.

Geometry and Topology of Manifolds

Geometry and Topology of Manifolds
Title Geometry and Topology of Manifolds PDF eBook
Author Vicente Muñoz
Publisher
Pages 408
Release 2020
Genre Algebraic topology
ISBN 9781470461621

Download Geometry and Topology of Manifolds Book in PDF, Epub and Kindle

This book represents a novel approach to differential topology. Its main focus is to give a comprehensive introduction to the classification of manifolds, with special attention paid to the case of surfaces, for which the book provides a complete classification from many points of view: topological, smooth, constant curvature, complex, and conformal. Each chapter briefly revisits basic results usually known to graduate students from an alternative perspective, focusing on surfaces. We provide full proofs of some remarkable results that sometimes are missed in basic courses (e.g., the construction of triangulations on surfaces, the classification of surfaces, the Gauss-Bonnet theorem, the degree-genus formula for complex plane curves, the existence of constant curvature metrics on conformal surfaces), and we give hints to questions about higher dimensional manifolds. Many examples and remarks are scattered through the book. Each chapter ends with an exhaustive collection of problems and a list of topics for further study.

Introduction to Topological Manifolds

Introduction to Topological Manifolds
Title Introduction to Topological Manifolds PDF eBook
Author John M. Lee
Publisher Springer Science & Business Media
Pages 395
Release 2006-04-06
Genre Mathematics
ISBN 038722727X

Download Introduction to Topological Manifolds Book in PDF, Epub and Kindle

Manifolds play an important role in topology, geometry, complex analysis, algebra, and classical mechanics. Learning manifolds differs from most other introductory mathematics in that the subject matter is often completely unfamiliar. This introduction guides readers by explaining the roles manifolds play in diverse branches of mathematics and physics. The book begins with the basics of general topology and gently moves to manifolds, the fundamental group, and covering spaces.

Topology and Geometry

Topology and Geometry
Title Topology and Geometry PDF eBook
Author Glen E. Bredon
Publisher Springer Science & Business Media
Pages 580
Release 1993-06-24
Genre Mathematics
ISBN 0387979263

Download Topology and Geometry Book in PDF, Epub and Kindle

This book offers an introductory course in algebraic topology. Starting with general topology, it discusses differentiable manifolds, cohomology, products and duality, the fundamental group, homology theory, and homotopy theory. From the reviews: "An interesting and original graduate text in topology and geometry...a good lecturer can use this text to create a fine course....A beginning graduate student can use this text to learn a great deal of mathematics."—-MATHEMATICAL REVIEWS

Geometric Topology in Dimensions 2 and 3

Geometric Topology in Dimensions 2 and 3
Title Geometric Topology in Dimensions 2 and 3 PDF eBook
Author E.E. Moise
Publisher Springer Science & Business Media
Pages 272
Release 2013-06-29
Genre Mathematics
ISBN 1461299063

Download Geometric Topology in Dimensions 2 and 3 Book in PDF, Epub and Kindle

Geometric topology may roughly be described as the branch of the topology of manifolds which deals with questions of the existence of homeomorphisms. Only in fairly recent years has this sort of topology achieved a sufficiently high development to be given a name, but its beginnings are easy to identify. The first classic result was the SchOnflies theorem (1910), which asserts that every 1-sphere in the plane is the boundary of a 2-cell. In the next few decades, the most notable affirmative results were the "Schonflies theorem" for polyhedral 2-spheres in space, proved by J. W. Alexander [Ad, and the triangulation theorem for 2-manifolds, proved by T. Rad6 [Rd. But the most striking results of the 1920s were negative. In 1921 Louis Antoine [A ] published an extraordinary paper in which he 4 showed that a variety of plausible conjectures in the topology of 3-space were false. Thus, a (topological) Cantor set in 3-space need not have a simply connected complement; therefore a Cantor set can be imbedded in 3-space in at least two essentially different ways; a topological 2-sphere in 3-space need not be the boundary of a 3-cell; given two disjoint 2-spheres in 3-space, there is not necessarily any third 2-sphere which separates them from one another in 3-space; and so on and on. The well-known "horned sphere" of Alexander [A ] appeared soon thereafter.

An Introduction to Manifolds

An Introduction to Manifolds
Title An Introduction to Manifolds PDF eBook
Author Loring W. Tu
Publisher Springer Science & Business Media
Pages 426
Release 2010-10-05
Genre Mathematics
ISBN 1441974008

Download An Introduction to Manifolds Book in PDF, Epub and Kindle

Manifolds, the higher-dimensional analogs of smooth curves and surfaces, are fundamental objects in modern mathematics. Combining aspects of algebra, topology, and analysis, manifolds have also been applied to classical mechanics, general relativity, and quantum field theory. In this streamlined introduction to the subject, the theory of manifolds is presented with the aim of helping the reader achieve a rapid mastery of the essential topics. By the end of the book the reader should be able to compute, at least for simple spaces, one of the most basic topological invariants of a manifold, its de Rham cohomology. Along the way, the reader acquires the knowledge and skills necessary for further study of geometry and topology. The requisite point-set topology is included in an appendix of twenty pages; other appendices review facts from real analysis and linear algebra. Hints and solutions are provided to many of the exercises and problems. This work may be used as the text for a one-semester graduate or advanced undergraduate course, as well as by students engaged in self-study. Requiring only minimal undergraduate prerequisites, 'Introduction to Manifolds' is also an excellent foundation for Springer's GTM 82, 'Differential Forms in Algebraic Topology'.

Manifolds, Sheaves, and Cohomology

Manifolds, Sheaves, and Cohomology
Title Manifolds, Sheaves, and Cohomology PDF eBook
Author Torsten Wedhorn
Publisher Springer
Pages 366
Release 2016-07-25
Genre Mathematics
ISBN 3658106336

Download Manifolds, Sheaves, and Cohomology Book in PDF, Epub and Kindle

This book explains techniques that are essential in almost all branches of modern geometry such as algebraic geometry, complex geometry, or non-archimedian geometry. It uses the most accessible case, real and complex manifolds, as a model. The author especially emphasizes the difference between local and global questions. Cohomology theory of sheaves is introduced and its usage is illustrated by many examples.