Geometric Group Theory
Title | Geometric Group Theory PDF eBook |
Author | Clara Löh |
Publisher | Springer |
Pages | 390 |
Release | 2017-12-19 |
Genre | Mathematics |
ISBN | 3319722549 |
Inspired by classical geometry, geometric group theory has in turn provided a variety of applications to geometry, topology, group theory, number theory and graph theory. This carefully written textbook provides a rigorous introduction to this rapidly evolving field whose methods have proven to be powerful tools in neighbouring fields such as geometric topology. Geometric group theory is the study of finitely generated groups via the geometry of their associated Cayley graphs. It turns out that the essence of the geometry of such groups is captured in the key notion of quasi-isometry, a large-scale version of isometry whose invariants include growth types, curvature conditions, boundary constructions, and amenability. This book covers the foundations of quasi-geometry of groups at an advanced undergraduate level. The subject is illustrated by many elementary examples, outlooks on applications, as well as an extensive collection of exercises.
Geometric Group Theory
Title | Geometric Group Theory PDF eBook |
Author | Clara Löh |
Publisher | Springer |
Pages | 389 |
Release | 2018-01-19 |
Genre | Mathematics |
ISBN | 9783319722535 |
Inspired by classical geometry, geometric group theory has in turn provided a variety of applications to geometry, topology, group theory, number theory and graph theory. This carefully written textbook provides a rigorous introduction to this rapidly evolving field whose methods have proven to be powerful tools in neighbouring fields such as geometric topology. Geometric group theory is the study of finitely generated groups via the geometry of their associated Cayley graphs. It turns out that the essence of the geometry of such groups is captured in the key notion of quasi-isometry, a large-scale version of isometry whose invariants include growth types, curvature conditions, boundary constructions, and amenability. This book covers the foundations of quasi-geometry of groups at an advanced undergraduate level. The subject is illustrated by many elementary examples, outlooks on applications, as well as an extensive collection of exercises.
Geometric Group Theory
Title | Geometric Group Theory PDF eBook |
Author | Clara Löh |
Publisher | |
Pages | |
Release | 2017 |
Genre | |
ISBN | 9783319722559 |
Topics in Geometric Group Theory
Title | Topics in Geometric Group Theory PDF eBook |
Author | Pierre de la Harpe |
Publisher | University of Chicago Press |
Pages | 320 |
Release | 2000-10-15 |
Genre | Education |
ISBN | 9780226317199 |
In this book, Pierre de la Harpe provides a concise and engaging introduction to geometric group theory, a new method for studying infinite groups via their intrinsic geometry that has played a major role in mathematics over the past two decades. A recognized expert in the field, de la Harpe adopts a hands-on approach, illustrating key concepts with numerous concrete examples. The first five chapters present basic combinatorial and geometric group theory in a unique and refreshing way, with an emphasis on finitely generated versus finitely presented groups. In the final three chapters, de la Harpe discusses new material on the growth of groups, including a detailed treatment of the "Grigorchuk group." Most sections are followed by exercises and a list of problems and complements, enhancing the book's value for students; problems range from slightly more difficult exercises to open research problems in the field. An extensive list of references directs readers to more advanced results as well as connections with other fields.
From Groups to Geometry and Back
Title | From Groups to Geometry and Back PDF eBook |
Author | Vaughn Climenhaga |
Publisher | American Mathematical Soc. |
Pages | 442 |
Release | 2017-04-07 |
Genre | Mathematics |
ISBN | 1470434792 |
Groups arise naturally as symmetries of geometric objects, and so groups can be used to understand geometry and topology. Conversely, one can study abstract groups by using geometric techniques and ultimately by treating groups themselves as geometric objects. This book explores these connections between group theory and geometry, introducing some of the main ideas of transformation groups, algebraic topology, and geometric group theory. The first half of the book introduces basic notions of group theory and studies symmetry groups in various geometries, including Euclidean, projective, and hyperbolic. The classification of Euclidean isometries leads to results on regular polyhedra and polytopes; the study of symmetry groups using matrices leads to Lie groups and Lie algebras. The second half of the book explores ideas from algebraic topology and geometric group theory. The fundamental group appears as yet another group associated to a geometric object and turns out to be a symmetry group using covering spaces and deck transformations. In the other direction, Cayley graphs, planar models, and fundamental domains appear as geometric objects associated to groups. The final chapter discusses groups themselves as geometric objects, including a gentle introduction to Gromov's theorem on polynomial growth and Grigorchuk's example of intermediate growth. The book is accessible to undergraduate students (and anyone else) with a background in calculus, linear algebra, and basic real analysis, including topological notions of convergence and connectedness. This book is a result of the MASS course in algebra at Penn State University in the fall semester of 2009.
Geometric Methods in Algebra and Number Theory
Title | Geometric Methods in Algebra and Number Theory PDF eBook |
Author | Fedor Bogomolov |
Publisher | Springer Science & Business Media |
Pages | 365 |
Release | 2006-06-22 |
Genre | Mathematics |
ISBN | 0817644172 |
* Contains a selection of articles exploring geometric approaches to problems in algebra, algebraic geometry and number theory * The collection gives a representative sample of problems and most recent results in algebraic and arithmetic geometry * Text can serve as an intense introduction for graduate students and those wishing to pursue research in algebraic and arithmetic geometry
Topological Methods in Group Theory
Title | Topological Methods in Group Theory PDF eBook |
Author | Ross Geoghegan |
Publisher | Springer Science & Business Media |
Pages | 473 |
Release | 2007-12-17 |
Genre | Mathematics |
ISBN | 0387746110 |
This book is about the interplay between algebraic topology and the theory of infinite discrete groups. It is a hugely important contribution to the field of topological and geometric group theory, and is bound to become a standard reference in the field. To keep the length reasonable and the focus clear, the author assumes the reader knows or can easily learn the necessary algebra, but wants to see the topology done in detail. The central subject of the book is the theory of ends. Here the author adopts a new algebraic approach which is geometric in spirit.