Genomics Assisted Breeding of Crops for Abiotic Stress Tolerance, Vol. II
Title | Genomics Assisted Breeding of Crops for Abiotic Stress Tolerance, Vol. II PDF eBook |
Author | Vijay Rani Rajpal |
Publisher | Springer |
Pages | 270 |
Release | 2019-07-01 |
Genre | Science |
ISBN | 3319995731 |
The abiotic stresses like drought, temperature, cold, salinity, heavy metals etc. affect a great deal on the yield performance of the agricultural crops. To cope up with these challenges, plant breeding programs world-wide are focussing on the development of stress tolerant varieties in all crop species. Significant genomic advances have been made for abiotic stress tolerance in various crop species in terms of availability of molecular markers, QTL mapping, genome-wide association studies (GWAS), genomic selection (GS) strategies, and transcriptome profiling. The broad-range of articles involving genomics and breeding approaches deepens our existing knowledge about complex traits. The chapters are written by authorities in their respective fields. This book provides comprehensive and consolidated account on the applications of the most recent findings and the progress made in genomics assisted breeding for tolerance to abiotic stresses in many important major crop species with a focus on applications of modern strategies for sustainable agriculture. The book is especially intended for students, molecular breeders and scientists working on the genomics-assisted genetic improvement of crop species for abiotic stress tolerance.
Stress Tolerance in Horticultural Crops
Title | Stress Tolerance in Horticultural Crops PDF eBook |
Author | Ajay Kumar |
Publisher | Woodhead Publishing |
Pages | 442 |
Release | 2021-05-14 |
Genre | Science |
ISBN | 0323853633 |
Stress Tolerance in Horticultural Crops: Challenges and Mitigation Strategies explores concepts, strategies and recent advancements in the area of abiotic stress tolerance in horticultural crops, highlighting the latest advances in molecular breeding, genome sequencing and functional genomics approaches. Further sections present specific insights on different aspects of abiotic stress tolerance from classical breeding, hybrid breeding, speed breeding, epigenetics, gene/quantitative trait loci (QTL) mapping, transgenics, physiological and biochemical approaches to OMICS approaches, including functional genomics, proteomics and genomics assisted breeding. Due to constantly changing environmental conditions, abiotic stress such as high temperature, salinity and drought are being understood as an imminent threat to horticultural crops, including their detrimental effects on plant growth, development, reproduction, and ultimately, on yield. This book offers a comprehensive resource on new developments that is ideal for anyone working in the field of abiotic stress management in horticultural crops, including researchers, students and educators. - Describes advances in whole genome and next generation sequencing approaches for breeding climate smart horticultural crops - Details advanced germplasm tolerance to abiotic stresses screened in the recent past and their performance - Includes advancements in OMICS approaches in horticultural crops
Genomic Designing for Abiotic Stress Resistant Cereal Crops
Title | Genomic Designing for Abiotic Stress Resistant Cereal Crops PDF eBook |
Author | Chittaranjan Kole |
Publisher | Springer Nature |
Pages | 332 |
Release | 2021-08-31 |
Genre | Science |
ISBN | 3030758753 |
This book presents abiotic stresses that cause crop damage in the range of 6-20%. Understanding the interaction of crop plants to the abiotic stresses caused by heat, cold, drought, flooding, submergence, salinity, acidity, etc., is important to develop resistant crop varieties. Knowledge on the advanced genetic and genomic crop improvement strategies including molecular breeding, transgenics, genomic-assisted breeding, and the recently emerging genome editing for developing resistant varieties in cereal crops is imperative for addressing FPNEE (food, health, nutrition, energy, and environment) security. Whole genome sequencing of these crops followed by genotyping-by-sequencing has facilitated precise information about the genes conferring resistance useful for gene discovery, allele mining, and shuttle breeding which in turn opened up the scope for 'designing' crop genomes with resistance to abiotic stresses. The nine chapters each dedicated to a cereal crop in this volume are deliberate on different types of abiotic stresses and their effects on and interaction with crop plants; enumerate on the available genetic diversity with regard to abiotic stress resistance among available cultivars; illuminate on the potential gene pools for utilization in interspecific gene transfer; are brief on the classical genetics of stress resistance and traditional breeding for transferring them to their cultivated counterparts; elucidate on the success stories of genetic engineering for developing abiotic stress-resistant crop varieties; discuss on molecular mapping of genes and QTLs underlying stress resistance and their marker-assisted introgression into elite varieties; enunciate on different emerging genomics-aided techniques including genomic selection, allele mining, gene discovery, and gene pyramiding for developing adaptive crop varieties with higher quantity and quality, and also elaborate some case studies on genome editing focusing on specific genes for generating abiotic stress-resistant crops.
Genomic Designing for Biotic Stress Resistant Cereal Crops
Title | Genomic Designing for Biotic Stress Resistant Cereal Crops PDF eBook |
Author | Chittaranjan Kole |
Publisher | Springer Nature |
Pages | 340 |
Release | 2021-08-31 |
Genre | Science |
ISBN | 3030758796 |
This book presents deliberations on molecular and genomic mechanisms underlying the interactions of crop plants to the biotic stresses caused by different diseases and pests that are important to develop resistant crop varieties. Knowledge on the advanced genetic and genomic crop improvement strategies including molecular breeding, transgenics, genomic-assisted breeding, and the recently emerging genome editing for developing resistant varieties in cereal crops is imperative for addressing FHNEE (food, health, nutrition, energy, and environment) security. Whole genome sequencing of these crops followed by genotyping-by-sequencing has provided precise information regarding the genes conferring resistance useful for gene discovery, allele mining, and shuttle breeding which in turn opened up the scope for 'designing' crop genomes with resistance to biotic stresses. The eight chapters each dedicated to a cereal crop in this volume elucidate on different types of biotic stresses and their effects on and interaction with the crop; enumerate on the available genetic diversity with regard to biotic stress resistance among available cultivars; illuminate on the potential gene pools for utilization in interspecific gene transfer; present brief on classical genetics of stress resistance and traditional breeding for transferring them to their cultivated counterparts; depict the success stories of genetic engineering for developing biotic stress-resistant crop varieties; discuss on molecular mapping of genes and QTLs underlying stress resistance and their marker-assisted introgression into elite varieties; enunciate on different genomics-aided techniques including genomic selection, allele mining, gene discovery, and gene pyramiding for developing adaptive crop varieties with higher quantity and quality of yields, and also elaborate some case studies on genome editing focusing on specific genes for generating biotic stress-resistant crops.
Biotechnologies of Crop Improvement, Volume 3
Title | Biotechnologies of Crop Improvement, Volume 3 PDF eBook |
Author | Satbir Singh Gosal |
Publisher | Springer |
Pages | 370 |
Release | 2019-08-31 |
Genre | |
ISBN | 9783030069100 |
Molecular Plant Abiotic Stress
Title | Molecular Plant Abiotic Stress PDF eBook |
Author | Aryadeep Roychoudhury |
Publisher | John Wiley & Sons |
Pages | 649 |
Release | 2019-06-13 |
Genre | Science |
ISBN | 111946367X |
A close examination of current research on abiotic stresses in various plant species The unpredictable environmental stress conditions associated with climate change are significant challenges to global food security, crop productivity, and agricultural sustainability. Rapid population growth and diminishing resources necessitate the development of crops that can adapt to environmental extremities. Although significant advancements have been made in developing plants through improved crop breeding practices and genetic manipulation, further research is necessary to understand how genes and metabolites for stress tolerance are modulated, and how cross-talk and regulators can be tuned to achieve stress tolerance. Molecular Plant Abiotic Stress: Biology and Biotechnology is an extensive investigation of the various forms of abiotic stresses encountered in plants, and susceptibility or tolerance mechanisms found in different plant species. In-depth examination of morphological, anatomical, biochemical, molecular and gene expression levels enables plant scientists to identify the different pathways and signaling cascades involved in stress response. This timely book: Covers a wide range of abiotic stresses in multiple plant species Provides researchers and scientists with transgenic strategies to overcome stress tolerances in several plant species Compiles the most recent research and up-to-date data on stress tolerance Examines both selective breeding and genetic engineering approaches to improving plant stress tolerances Written and edited by prominent scientists and researchers from across the globe Molecular Plant Abiotic Stress: Biology and Biotechnology is a valuable source of information for students, academics, scientists, researchers, and industry professionals in fields including agriculture, botany, molecular biology, biochemistry and biotechnology, and plant physiology.
Cotton Precision Breeding
Title | Cotton Precision Breeding PDF eBook |
Author | Mehboob-ur- Rahman |
Publisher | Springer Nature |
Pages | 459 |
Release | 2021-06-08 |
Genre | Science |
ISBN | 3030645045 |
Cotton, the most important natural fiber crop, has been improved by conventional breeding—largely through planned hybridization of different cotton genotypes, since the discovery of Mendelian genetics. All these efforts resulted in the development of resilient high yielding cotton varieties. However, the progress through conventional breeding procedures is slow because of long lag periods for developing a variety, little control over the new genetic combinations, unwanted traits and lack of foolproof performance testing system. Genomic assays discovered over the last two decades have made it possible to understand the “language” of the genome by associating the genes with specific traits. Together with the more recently established gene-editing tools like CRISPR-Cas9, the cotton genome can be tailored much more precisely than ever before. In this regard, genetic information has been harnessed, through (i) sequencing of the progenitor and cultivated cotton species, (ii) ongoing mega pan-genome sequencing projects, (iii) genetic and physical mapping, and (iv) introgression of genes from alien sources, that resulted in the development of resilient cotton cultivars. These technologies have been deployed or are attempting to overcome the challenges of water shortage, excessive heat in most cotton growing regions, infectious diseases and infestation of insect pests, as well as rising production cost, for sustainable cotton production beyond 2030. In this book, new knowledge generated by the cotton research community and its application for developing resilient cotton are comprehensively summarized. This book contributed by well-known cotton researchers is a timely collection of the challenges and successes of precision cotton breeding in a changing environment.