Handbook of Maize: Its Biology
Title | Handbook of Maize: Its Biology PDF eBook |
Author | Jeff L. Bennetzen |
Publisher | Springer Science & Business Media |
Pages | 593 |
Release | 2008-12-25 |
Genre | Science |
ISBN | 0387794182 |
Handbook of Maize: Its Biology centers on the past, present and future of maize as a model for plant science research and crop improvement. The book includes brief, focused chapters from the foremost maize experts and features a succinct collection of informative images representing the maize germplasm collection.
Genome Engineering for Crop Improvement
Title | Genome Engineering for Crop Improvement PDF eBook |
Author | Bidyut Kumar Sarmah |
Publisher | Springer Nature |
Pages | 277 |
Release | 2021-04-18 |
Genre | Science |
ISBN | 3030633721 |
This book serves the teachers, researchers and the students as a handy and concise reference as well as guidebook while designing and planning for use of the advanced technologies for crop improvement. The content of the book is designed to cover the latest genome engineering techniques for crop improvement. The conventional breeding has got its limitations such as non-availability of desired genes within the genepool. In many cases, breeding has been highly used and it has nearly reached its highest limit so far as the productivity and production of crops are concerned. However, with increasing need of food and decreasing resources, including water, land, labour, etc., to feed the growing population, the alternative available ways of increasing crop productivity need to be explored and exploited. Genome engineering has a wide scope that includes technologies such as genetic engineering and transgenesis, RNA technologies, CRISPR, cisgenics and subgenics for better productivity and more efficient biotic and abiotic stress management. Therefore, the book is planned to enlighten the readers with the advanced technologies with examples and case studies, whenever possible. Efforts will be made to emphasize on general efforts on various major food crops; however, it would also be made clear that such efforts could be taken as proofs of concepts and that this could be extrapolated keeping the demand in mind.
Genomics and Disease Resistance in Wheat and Maize
Title | Genomics and Disease Resistance in Wheat and Maize PDF eBook |
Author | James A. Birchler |
Publisher | Frontiers Media SA |
Pages | 191 |
Release | 2022-12-06 |
Genre | Science |
ISBN | 2832508987 |
Wheat Blast
Title | Wheat Blast PDF eBook |
Author | Sudheer Kumar |
Publisher | CRC Press |
Pages | 164 |
Release | 2020-04-09 |
Genre | Science |
ISBN | 0429894074 |
Wheat Blast provides systematic and practical information on wheat blast pathology, summarises research progress and discusses future perspectives based on current understanding of the existing issues. The book explores advance technologies that may help in deciding the path for future research and development for better strategies and techniques to manage the wheat blast disease. It equips readers with basic and applied understanding on the identification of disease, its distribution and chances of further spread in new areas, its potential to cause yield losses to wheat, the conditions that favour disease development, disease prediction modelling, resistance breeding methods and management strategies against wheat blast. Features: Provides comprehensive information on wheat blast pathogen and its management under a single umbrella Covers disease identification and diagnostics which will be helpful to check introduction in new areas Discusses methods and protocol to study the different aspects of the disease such as diagnostics, variability, resistance screening, epiphytotic creation etc. Gives deep insight on the past, present and future outlook of wheat blast research progress This book’s chapters are contributed by experts and pioneers in their respective fields and it provides comprehensive insight with updated findings on wheat blast research. It serves as a valuable reference for researchers, policy makers, students, teachers, farmers, seed growers, traders, and other stakeholders dealing with wheat.
Genetic and Genomic Resources for Grain Cereals Improvement
Title | Genetic and Genomic Resources for Grain Cereals Improvement PDF eBook |
Author | Mohar Singh |
Publisher | Academic Press |
Pages | 386 |
Release | 2015-11-10 |
Genre | Business & Economics |
ISBN | 0128020377 |
Genetic and Genomic Resources For Cereals Improvement is the first book to bring together the latest available genetic resources and genomics to facilitate the identification of specific germplasm, trait mapping, and allele mining that are needed to more effectively develop biotic and abiotic-stress-resistant grains. As grain cereals, including rice, wheat, maize, barley, sorghum, and millets constitute the bulk of global diets, both of vegetarian and non-vegetarian, there is a greater need for further genetic improvement, breeding, and plant genetic resources to secure the future food supply. This book is an invaluable resource for researchers, crop biologists, and students working with crop development and the changes in environmental climate that have had significant impact on crop production. It includes the latest information on tactics that ensure that environmentally robust genes and crops resilient to climate change are identified and preserved. - Provides a single-volume resource on the global research work on grain cereals genetics and genomics - Presents information for effectively managing and utilizing the genetic resources of this core food supply source - Includes coverage of rice, wheat, maize, barley, sorghum, and pearl, finger and foxtail millets
Disease Resistance in Crop Plants
Title | Disease Resistance in Crop Plants PDF eBook |
Author | Shabir Hussain Wani |
Publisher | Springer |
Pages | 314 |
Release | 2019-07-24 |
Genre | Science |
ISBN | 3030207285 |
Human population is escalating at an enormous pace and is estimated to reach 9.7 billion by 2050. As a result, there will be an increase in demand for agricultural production by 60–110% between the years 2005 and 2050 at the global level; the number will be even more drastic in the developing world. Pathogens, animals, and weeds are altogether responsible for between 20 to 40 % of global agricultural productivity decrease. As such, managing disease development in plants continues to be a major strategy to ensure adequate food supply for the world. Accordingly, both the public and private sectors are moving to harness the tools and paradigms that promise resistance against pests and diseases. While the next generation of disease resistance research is progressing, maximum disease resistance traits are expected to be polygenic in nature and controlled by selective genes positioned at putative quantitative trait loci (QTLs). It has also been realized that sources of resistance are generally found in wild relatives or cultivars of lesser agronomic significance. However, introgression of disease resistance traits into commercial crop varieties typically involves many generations of backcrossing to transmit a promising genotype. Molecular marker-assisted breeding (MAB) has been found to facilitate the pre-selection of traits even prior to their expression. To date, researchers have utilized disease resistance genes (R-genes) in different crops including cereals, pulses, and oilseeds and other economically important plants, to improve productivity. Interestingly, comparison of different R genes that empower plants to resist an array of pathogens has led to the realization that the proteins encoded by these genes have numerous features in common. The above observation therefore suggests that plants may have co-evolved signal transduction pathways to adopt resistance against a wide range of divergent pathogens. A better understanding of the molecular mechanisms necessary for pathogen identification and a thorough dissection of the cellular responses to biotic stresses will certainly open new vistas for sustainable crop disease management. This book summarizes the recent advances in molecular and genetic techniques that have been successfully applied to impart disease resistance for plants and crops. It integrates the contributions from plant scientists targeting disease resistance mechanisms using molecular, genetic, and genomic approaches. This collection therefore serves as a reference source for scientists, academicians and post graduate students interested in or are actively engaged in dissecting disease resistance in plants using advanced genetic tools.
Translational Genomics for Crop Breeding, Volume 1
Title | Translational Genomics for Crop Breeding, Volume 1 PDF eBook |
Author | Rajeev Varshney |
Publisher | John Wiley & Sons |
Pages | 384 |
Release | 2013-12-31 |
Genre | Science |
ISBN | 0470962909 |
Genomic Applications for Crop Breeding: Biotic Stress is the first of two volumes looking at the latest advances in genomic applications to crop breeding. This volume focuses on genomic-assisted advances for improving economically important crops against biotic stressors, such as viruses, fungi, nematodes, and bacteria. Looking at key advances in crops such as rice, barley, wheat, and potato amongst others, Genomic Applications for Crop Breeding: Biotic Stress will be an essential reference for crop scientists, geneticists, breeders, industry personnel and advanced students in the field.