Generalized Differential and Integral Quadrature
Title | Generalized Differential and Integral Quadrature PDF eBook |
Author | Francesco Tornabene |
Publisher | Società Editrice Esculapio |
Pages | 689 |
Release | 2023-10-17 |
Genre | Technology & Engineering |
ISBN |
The main aim of this book is to analyze the mathematical fundamentals and the main features of the Generalized Differential Quadrature (GDQ) and Generalized Integral Quadrature (GIQ) techniques. Furthermore, another interesting aim of the present book is to shown that from the two numerical techniques mentioned above it is possible to derive two different approaches such as the Strong and Weak Finite Element Methods (SFEM and WFEM), that will be used to solve various structural problems and arbitrarily shaped structures. A general approach to the Differential Quadrature is proposed. The weighting coefficients for different basis functions and grid distributions are determined. Furthermore, the expressions of the principal approximating polynomials and grid distributions, available in the literature, are shown. Besides the classic orthogonal polynomials, a new class of basis functions, which depend on the radial distance between the discretization points, is presented. They are known as Radial Basis Functions (or RBFs). The general expressions for the derivative evaluation can be utilized in the local form to reduce the computational cost. From this concept the Local Generalized Differential Quadrature (LGDQ) method is derived. The Generalized Integral Quadrature (GIQ) technique can be used employing several basis functions, without any restriction on the point distributions for the given definition domain. To better underline these concepts some classical numerical integration schemes are reported, such as the trapezoidal rule or the Simpson method. An alternative approach based on Taylor series is also illustrated to approximate integrals. This technique is named as Generalized Taylor-based Integral Quadrature (GTIQ) method. The major structural theories for the analysis of the mechanical behavior of various structures are presented in depth in the book. In particular, the strong and weak formulations of the corresponding governing equations are discussed and illustrated. Generally speaking, two formulations of the same system of governing equations can be developed, which are respectively the strong and weak (or variational) formulations. Once the governing equations that rule a generic structural problem are obtained, together with the corresponding boundary conditions, a differential system is written. In particular, the Strong Formulation (SF) of the governing equations is obtained. The differentiability requirement, instead, is reduced through a weighted integral statement if the corresponding Weak Formulation (WF) of the governing equations is developed. Thus, an equivalent integral formulation is derived, starting directly from the previous one. In particular, the formulation in hand is obtained by introducing a Lagrangian approximation of the degrees of freedom of the problem. The need of studying arbitrarily shaped domains or characterized by mechanical and geometrical discontinuities leads to the development of new numerical approaches that divide the structure in finite elements. Then, the strong form or the weak form of the fundamental equations are solved inside each element. The fundamental aspects of this technique, which the author defined respectively Strong Formulation Finite Element Method (SFEM) and Weak Formulation Finite Element Method (WFEM), are presented in the book.
Differential Quadrature and Its Application in Engineering
Title | Differential Quadrature and Its Application in Engineering PDF eBook |
Author | Chang Shu |
Publisher | Springer Science & Business Media |
Pages | 366 |
Release | 2000-01-14 |
Genre | Mathematics |
ISBN | 9781852332099 |
In the past few years, the differential quadrature method has been applied extensively in engineering. This book, aimed primarily at practising engineers, scientists and graduate students, gives a systematic description of the mathematical fundamentals of differential quadrature and its detailed implementation in solving Helmholtz problems and problems of flow, structure and vibration. Differential quadrature provides a global approach to numerical discretization, which approximates the derivatives by a linear weighted sum of all the functional values in the whole domain. Following the analysis of function approximation and the analysis of a linear vector space, it is shown in the book that the weighting coefficients of the polynomial-based, Fourier expansion-based, and exponential-based differential quadrature methods can be computed explicitly. It is also demonstrated that the polynomial-based differential quadrature method is equivalent to the highest-order finite difference scheme. Furthermore, the relationship between differential quadrature and conventional spectral collocation is analysed. The book contains material on: - Linear Vector Space Analysis and the Approximation of a Function; - Polynomial-, Fourier Expansion- and Exponential-based Differential Quadrature; - Differential Quadrature Weighting Coefficient Matrices; - Solution of Differential Quadrature-resultant Equations; - The Solution of Incompressible Navier-Stokes and Helmholtz Equations; - Structural and Vibrational Analysis Applications; - Generalized Integral Quadrature and its Application in the Solution of Boundary Layer Equations. Three FORTRAN programs for simulation of driven cavity flow, vibration analysis of plate and Helmholtz eigenvalue problems respectively, are appended. These sample programs should give the reader a better understanding of differential quadrature and can easily be modified to solve the readers own engineering problems.
Mathematical Methods in Interdisciplinary Sciences
Title | Mathematical Methods in Interdisciplinary Sciences PDF eBook |
Author | Snehashish Chakraverty |
Publisher | John Wiley & Sons |
Pages | 464 |
Release | 2020-07-15 |
Genre | Mathematics |
ISBN | 1119585503 |
Brings mathematics to bear on your real-world, scientific problems Mathematical Methods in Interdisciplinary Sciences provides a practical and usable framework for bringing a mathematical approach to modelling real-life scientific and technological problems. The collection of chapters Dr. Snehashish Chakraverty has provided describe in detail how to bring mathematics, statistics, and computational methods to the fore to solve even the most stubborn problems involving the intersection of multiple fields of study. Graduate students, postgraduate students, researchers, and professors will all benefit significantly from the author's clear approach to applied mathematics. The book covers a wide range of interdisciplinary topics in which mathematics can be brought to bear on challenging problems requiring creative solutions. Subjects include: Structural static and vibration problems Heat conduction and diffusion problems Fluid dynamics problems The book also covers topics as diverse as soft computing and machine intelligence. It concludes with examinations of various fields of application, like infectious diseases, autonomous car and monotone inclusion problems.
Mathematical Methods in Dynamical Systems
Title | Mathematical Methods in Dynamical Systems PDF eBook |
Author | S. Chakraverty |
Publisher | CRC Press |
Pages | 393 |
Release | 2023-05-19 |
Genre | Mathematics |
ISBN | 1000833771 |
The art of applying mathematics to real-world dynamical problems such as structural dynamics, fluid dynamics, wave dynamics, robot dynamics, etc. can be extremely challenging. Various aspects of mathematical modelling that may include deterministic or uncertain (fuzzy, interval, or stochastic) scenarios, along with integer or fractional order, are vital to understanding these dynamical systems. Mathematical Methods in Dynamical Systems offers problem-solving techniques and includes different analytical, semi-analytical, numerical, and machine intelligence methods for finding exact and/or approximate solutions of governing equations arising in dynamical systems. It provides a singular source of computationally efficient methods to investigate these systems and includes coverage of various industrial applications in a simple yet comprehensive way.
Applied Mechanics Reviews
Title | Applied Mechanics Reviews PDF eBook |
Author | |
Publisher | |
Pages | 724 |
Release | 1996 |
Genre | Mechanics, Applied |
ISBN |
Anisotropic Doubly-Curved Shells
Title | Anisotropic Doubly-Curved Shells PDF eBook |
Author | Francesco Tornabene |
Publisher | Società Editrice Esculapio |
Pages | 1199 |
Release | 2019-11-01 |
Genre | Technology & Engineering |
ISBN | 8835328993 |
This book aims to present in depth several Higher-order Shear Deformation Theories (HSDTs) by means of a unified approach for the mechanical analysis of doubly-curved shell structures made of anisotropic and composite materials. In particular, the strong and weak formulations of the corresponding governing equations are discussed and illustrated. The approach presented in this volume is completely general and represents a valid tool to investigate the structural behavior of many arbitrarily shaped structures. An isogeometric mapping procedure is also illustrated to this aim. Special attention is given also to advanced and innovative constituents, such as Carbon Nanotubes (CNTs), Variable Angle Tow (VAT) composites and Functionally Graded Materials (FGMs). In addition, several numerical applications are developed to support the theoretical models. Accurate, efficient and reliable numerical techniques able to approximate both derivatives and integrals are presented, which are respectively the Differential Quadrature (DQ) and Integral Quadrature (IQ) methods. Finally, two numerical techniques, named Strong Formulation Finite Element Method (SFEM) and Weak Formulation Finite Element Method (WFEM), are developed to deal with multi-element domains characterized by arbitrary shapes and discontinuities.
Mechanics of Laminated Composite Doubly-Curved Shell Structures
Title | Mechanics of Laminated Composite Doubly-Curved Shell Structures PDF eBook |
Author | Francesco Tornabene |
Publisher | Società Editrice Esculapio |
Pages | 824 |
Release | 2021-12-01 |
Genre | Technology & Engineering |
ISBN |
This manuscript comes from the experience gained over ten years of study and research on shell structures and on the Generalized Differential Quadrature method. The title, Mechanics of Laminated Composite Doubly-Curved Shell Structures, illustrates the theme followed in the present volume. The present study aims to analyze the static and dynamic behavior of moderately thick shells made of composite materials through the application of the Differential Quadrature (DQ) technique. A particular attention is paid, other than fibrous and laminated composites, also to “Functionally Graded Materials” (FGMs). They are non-homogeneous materials, characterized by a continuous variation of the mechanical properties through a particular direction. The GDQ numerical solution is compared, not only with literature results, but also with the ones supplied and obtained through the use of different structural codes based on the Finite Element Method (FEM). Furthermore, an advanced version of GDQ method is also presented. This methodology is termed Strong Formulation Finite Element Method (SFEM) because it employs the strong form of the differential system of equations at the master element level and the mapping technique, proper of FEM. The connectivity between two elements is enforced through compatibility conditions.