Galois Theory and Advanced Linear Algebra
Title | Galois Theory and Advanced Linear Algebra PDF eBook |
Author | Rajnikant Sinha |
Publisher | Springer Nature |
Pages | 357 |
Release | 2019-12-28 |
Genre | Mathematics |
ISBN | 9811398496 |
This book discusses major topics in Galois theory and advanced linear algebra, including canonical forms. Divided into four chapters and presenting numerous new theorems, it serves as an easy-to-understand textbook for undergraduate students of advanced linear algebra, and helps students understand other courses, such as Riemannian geometry. The book also discusses key topics including Cayley–Hamilton theorem, Galois groups, Sylvester’s law of inertia, Eisenstein criterion, and solvability by radicals. Readers are assumed to have a grasp of elementary properties of groups, rings, fields, and vector spaces, and familiarity with the elementary properties of positive integers, inner product space of finite dimension and linear transformations is beneficial.
Linear Algebra
Title | Linear Algebra PDF eBook |
Author | Kuldeep Singh |
Publisher | Oxford University Press |
Pages | 617 |
Release | 2013-10 |
Genre | Mathematics |
ISBN | 0199654441 |
"This book is intended for first- and second-year undergraduates arriving with average mathematics grades ... The strength of the text is in the large number of examples and the step-by-step explanation of each topic as it is introduced. It is compiled in a way that allows distance learning, with explicit solutions to all of the set problems freely available online http://www.oup.co.uk/companion/singh" -- From preface.
Algebra
Title | Algebra PDF eBook |
Author | Siegfried Bosch |
Publisher | Springer |
Pages | 369 |
Release | 2018-11-02 |
Genre | Mathematics |
ISBN | 3319951777 |
The material presented here can be divided into two parts. The first, sometimes referred to as abstract algebra, is concerned with the general theory of algebraic objects such as groups, rings, and fields, hence, with topics that are also basic for a number of other domains in mathematics. The second centers around Galois theory and its applications. Historically, this theory originated from the problem of studying algebraic equations, a problem that, after various unsuccessful attempts to determine solution formulas in higher degrees, found its complete clarification through the brilliant ideas of E. Galois. The study of algebraic equations has served as a motivating terrain for a large part of abstract algebra, and according to this, algebraic equations are visible as a guiding thread throughout the book. To underline this point, an introduction to the history of algebraic equations is included. The entire book is self-contained, up to a few prerequisites from linear algebra. It covers most topics of current algebra courses and is enriched by several optional sections that complement the standard program or, in some cases, provide a first view on nearby areas that are more advanced. Every chapter begins with an introductory section on "Background and Overview," motivating the material that follows and discussing its highlights on an informal level. Furthermore, each section ends with a list of specially adapted exercises, some of them with solution proposals in the appendix. The present English edition is a translation and critical revision of the eighth German edition of the Algebra book by the author. The book appeared for the first time in 1993 and, in later years, was complemented by adding a variety of related topics. At the same time it was modified and polished to keep its contents up to date.
A Guide to Advanced Linear Algebra
Title | A Guide to Advanced Linear Algebra PDF eBook |
Author | Steven H. Weintraub |
Publisher | MAA |
Pages | 267 |
Release | 2011-07-07 |
Genre | Mathematics |
ISBN | 0883853515 |
A thorough development of a topic at the core of mathematics, ideal for graduate students and professional mathematicians.
Advanced Linear Algebra
Title | Advanced Linear Algebra PDF eBook |
Author | Steven Roman |
Publisher | Springer Science & Business Media |
Pages | 488 |
Release | 2007-12-31 |
Genre | Mathematics |
ISBN | 038727474X |
Covers a notably broad range of topics, including some topics not generally found in linear algebra books Contains a discussion of the basics of linear algebra
Linear Algebra and Geometry
Title | Linear Algebra and Geometry PDF eBook |
Author | Igor R. Shafarevich |
Publisher | Springer Science & Business Media |
Pages | 536 |
Release | 2012-08-23 |
Genre | Mathematics |
ISBN | 3642309941 |
This book on linear algebra and geometry is based on a course given by renowned academician I.R. Shafarevich at Moscow State University. The book begins with the theory of linear algebraic equations and the basic elements of matrix theory and continues with vector spaces, linear transformations, inner product spaces, and the theory of affine and projective spaces. The book also includes some subjects that are naturally related to linear algebra but are usually not covered in such courses: exterior algebras, non-Euclidean geometry, topological properties of projective spaces, theory of quadrics (in affine and projective spaces), decomposition of finite abelian groups, and finitely generated periodic modules (similar to Jordan normal forms of linear operators). Mathematical reasoning, theorems, and concepts are illustrated with numerous examples from various fields of mathematics, including differential equations and differential geometry, as well as from mechanics and physics.
Abstract Algebra
Title | Abstract Algebra PDF eBook |
Author | John W. Lawrence |
Publisher | Cambridge University Press |
Pages | 640 |
Release | 2021-04-15 |
Genre | Mathematics |
ISBN | 1108865518 |
Through this book, upper undergraduate mathematics majors will master a challenging yet rewarding subject, and approach advanced studies in algebra, number theory and geometry with confidence. Groups, rings and fields are covered in depth with a strong emphasis on irreducible polynomials, a fresh approach to modules and linear algebra, a fresh take on Gröbner theory, and a group theoretic treatment of Rejewski's deciphering of the Enigma machine. It includes a detailed treatment of the basics on finite groups, including Sylow theory and the structure of finite abelian groups. Galois theory and its applications to polynomial equations and geometric constructions are treated in depth. Those interested in computations will appreciate the novel treatment of division algorithms. This rigorous text 'gets to the point', focusing on concisely demonstrating the concept at hand, taking a 'definitions first, examples next' approach. Exercises reinforce the main ideas of the text and encourage students' creativity.