Fundamentals of Approximation Theory
Title | Fundamentals of Approximation Theory PDF eBook |
Author | Hrushikesh Narhar Mhaskar |
Publisher | CRC Press |
Pages | 580 |
Release | 2000 |
Genre | Mathematics |
ISBN | 9780849309397 |
The field of approximation theory has become so vast that it intersects with every other branch of analysis and plays an increasingly important role in applications in the applied sciences and engineering. Fundamentals of Approximation Theory presents a systematic, in-depth treatment of some basic topics in approximation theory designed to emphasize the rich connections of the subject with other areas of study. With an approach that moves smoothly from the very concrete to more and more abstract levels, this text provides an outstanding blend of classical and abstract topics. The first five chapters present the core of information that readers need to begin research in this domain. The final three chapters the authors devote to special topics-splined functions, orthogonal polynomials, and best approximation in normed linear spaces- that illustrate how the core material applies in other contexts and expose readers to the use of complex analytic methods in approximation theory. Each chapter contains problems of varying difficulty, including some drawn from contemporary research. Perfect for an introductory graduate-level class, Fundamentals of Approximation Theory also contains enough advanced material to serve more specialized courses at the doctoral level and to interest scientists and engineers.
Approximation Theory and Approximation Practice, Extended Edition
Title | Approximation Theory and Approximation Practice, Extended Edition PDF eBook |
Author | Lloyd N. Trefethen |
Publisher | SIAM |
Pages | 377 |
Release | 2019-01-01 |
Genre | Mathematics |
ISBN | 1611975948 |
This is a textbook on classical polynomial and rational approximation theory for the twenty-first century. Aimed at advanced undergraduates and graduate students across all of applied mathematics, it uses MATLAB to teach the fields most important ideas and results. Approximation Theory and Approximation Practice, Extended Edition differs fundamentally from other works on approximation theory in a number of ways: its emphasis is on topics close to numerical algorithms; concepts are illustrated with Chebfun; and each chapter is a PUBLISHable MATLAB M-file, available online. The book centers on theorems and methods for analytic functions, which appear so often in applications, rather than on functions at the edge of discontinuity with their seductive theoretical challenges. Original sources are cited rather than textbooks, and each item in the bibliography is accompanied by an editorial comment. In addition, each chapter has a collection of exercises, which span a wide range from mathematical theory to Chebfun-based numerical experimentation. This textbook is appropriate for advanced undergraduate or graduate students who have an understanding of numerical analysis and complex analysis. It is also appropriate for seasoned mathematicians who use MATLAB.
Convergence Estimates in Approximation Theory
Title | Convergence Estimates in Approximation Theory PDF eBook |
Author | Vijay Gupta |
Publisher | Springer Science & Business Media |
Pages | 368 |
Release | 2014-01-08 |
Genre | Mathematics |
ISBN | 3319027654 |
The study of linear positive operators is an area of mathematical studies with significant relevance to studies of computer-aided geometric design, numerical analysis, and differential equations. This book focuses on the convergence of linear positive operators in real and complex domains. The theoretical aspects of these operators have been an active area of research over the past few decades. In this volume, authors Gupta and Agarwal explore new and more efficient methods of applying this research to studies in Optimization and Analysis. The text will be of interest to upper-level students seeking an introduction to the field and to researchers developing innovative approaches.
Theory of Approximation
Title | Theory of Approximation PDF eBook |
Author | N. I. Achieser |
Publisher | Courier Corporation |
Pages | 324 |
Release | 2013-06-05 |
Genre | Mathematics |
ISBN | 0486153134 |
A pioneer of many modern developments in approximation theory, N. I. Achieser designed this graduate-level text from the standpoint of functional analysis. The first two chapters address approximation problems in linear normalized spaces and the ideas of P. L. Tchebysheff. Chapter III examines the elements of harmonic analysis, and Chapter IV, integral transcendental functions of the exponential type. The final two chapters explore the best harmonic approximation of functions and Wiener's theorem on approximation. Professor Achieser concludes this exemplary text with an extensive section of problems and applications (elementary extremal problems, Szego's theorem, the Carathéodory-Fejér problem, and more).
Introduction To The Theory Of Weighted Polynomial Approximation
Title | Introduction To The Theory Of Weighted Polynomial Approximation PDF eBook |
Author | H N Mhaskar |
Publisher | World Scientific |
Pages | 398 |
Release | 1997-01-04 |
Genre | Mathematics |
ISBN | 9814518050 |
In this book, we have attempted to explain a variety of different techniques and ideas which have contributed to this subject in its course of successive refinements during the last 25 years. There are other books and surveys reviewing the ideas from the perspective of either potential theory or orthogonal polynomials. The main thrust of this book is to introduce the subject from an approximation theory point of view. Thus, the main motivation is to study analogues of results from classical trigonometric approximation theory, introducing other ideas as needed. It is not our objective to survey the most recent results, but merely to introduce to the readers the thought processes and ideas as they are developed.This book is intended to be self-contained, although the reader is expected to be familiar with rudimentary real and complex analysis. It will also help to have studied elementary trigonometric approximation theory, and have some exposure to orthogonal polynomials.
Fundamentals of Number Theory
Title | Fundamentals of Number Theory PDF eBook |
Author | William J. LeVeque |
Publisher | Courier Corporation |
Pages | 292 |
Release | 2014-01-05 |
Genre | Mathematics |
ISBN | 0486141500 |
This excellent textbook introduces the basics of number theory, incorporating the language of abstract algebra. A knowledge of such algebraic concepts as group, ring, field, and domain is not assumed, however; all terms are defined and examples are given — making the book self-contained in this respect. The author begins with an introductory chapter on number theory and its early history. Subsequent chapters deal with unique factorization and the GCD, quadratic residues, number-theoretic functions and the distribution of primes, sums of squares, quadratic equations and quadratic fields, diophantine approximation, and more. Included are discussions of topics not always found in introductory texts: factorization and primality of large integers, p-adic numbers, algebraic number fields, Brun's theorem on twin primes, and the transcendence of e, to mention a few. Readers will find a substantial number of well-chosen problems, along with many notes and bibliographical references selected for readability and relevance. Five helpful appendixes — containing such study aids as a factor table, computer-plotted graphs, a table of indices, the Greek alphabet, and a list of symbols — and a bibliography round out this well-written text, which is directed toward undergraduate majors and beginning graduate students in mathematics. No post-calculus prerequisite is assumed. 1977 edition.
A Course in Approximation Theory
Title | A Course in Approximation Theory PDF eBook |
Author | Elliott Ward Cheney |
Publisher | American Mathematical Soc. |
Pages | 379 |
Release | 2009-01-13 |
Genre | Mathematics |
ISBN | 0821847988 |
This textbook is designed for graduate students in mathematics, physics, engineering, and computer science. Its purpose is to guide the reader in exploring contemporary approximation theory. The emphasis is on multi-variable approximation theory, i.e., the approximation of functions in several variables, as opposed to the classical theory of functions in one variable. Most of the topics in the book, heretofore accessible only through research papers, are treated here from the basics to the currently active research, often motivated by practical problems arising in diverse applications such as science, engineering, geophysics, and business and economics. Among these topics are projections, interpolation paradigms, positive definite functions, interpolation theorems of Schoenberg and Micchelli, tomography, artificial neural networks, wavelets, thin-plate splines, box splines, ridge functions, and convolutions. An important and valuable feature of the book is the bibliography of almost 600 items directing the reader to important books and research papers. There are 438 problems and exercises scattered through the book allowing the student reader to get a better understanding of the subject.