Functions, Spaces, and Expansions
Title | Functions, Spaces, and Expansions PDF eBook |
Author | Ole Christensen |
Publisher | Springer Science & Business Media |
Pages | 280 |
Release | 2010-05-27 |
Genre | Mathematics |
ISBN | 0817649808 |
This graduate-level textbook is a detailed exposition of key mathematical tools in analysis aimed at students, researchers, and practitioners across science and engineering. Every topic covered has been specifically chosen because it plays a key role outside the field of pure mathematics. Although the treatment of each topic is mathematical in nature, and concrete applications are not delineated, the principles and tools presented are fundamental to exploring the computational aspects of physics and engineering. Readers are expected to have a solid understanding of linear algebra, in Rn and in general vector spaces. Familiarity with the basic concepts of calculus and real analysis, including Riemann integrals and infinite series of real or complex numbers, is also required.
Applications of Functional Analysis in Engineering
Title | Applications of Functional Analysis in Engineering PDF eBook |
Author | J. Nowinski |
Publisher | Springer Science & Business Media |
Pages | 309 |
Release | 2013-03-09 |
Genre | Science |
ISBN | 146843926X |
Functional analysis owes its OrIgms to the discovery of certain striking analogies between apparently distinct disciplines of mathematics such as analysis, algebra, and geometry. At the turn of the nineteenth century, a number of observations, made sporadically over the preceding years, began to inspire systematic investigations into the common features of these three disciplines, which have developed rather independently of each other for so long. It was found that many concepts of this triad-analysis, algebra, geometry-could be incorporated into a single, but considerably more abstract, new discipline which came to be called functional analysis. In this way, many aspects of analysis and algebra acquired unexpected and pro found geometric meaning, while geometric methods inspired new lines of approach in analysis and algebra. A first significant step toward the unification and generalization of algebra, analysis, and geometry was taken by Hilbert in 1906, who studied the collection, later called 1 , composed of infinite sequences x = Xb X 2, ... , 2 X , ... , of numbers satisfying the condition that the sum Ik"= 1 X 2 converges. k k The collection 12 became a prototype of the class of collections known today as Hilbert spaces.
Analysis in Euclidean Space
Title | Analysis in Euclidean Space PDF eBook |
Author | Kenneth Hoffman |
Publisher | Courier Dover Publications |
Pages | 449 |
Release | 2019-07-17 |
Genre | Mathematics |
ISBN | 0486833658 |
Developed for an introductory course in mathematical analysis at MIT, this text focuses on concepts, principles, and methods. Its introductions to real and complex analysis are closely formulated, and they constitute a natural introduction to complex function theory. Starting with an overview of the real number system, the text presents results for subsets and functions related to Euclidean space of n dimensions. It offers a rigorous review of the fundamentals of calculus, emphasizing power series expansions and introducing the theory of complex-analytic functions. Subsequent chapters cover sequences of functions, normed linear spaces, and the Lebesgue interval. They discuss most of the basic properties of integral and measure, including a brief look at orthogonal expansions. A chapter on differentiable mappings addresses implicit and inverse function theorems and the change of variable theorem. Exercises appear throughout the book, and extensive supplementary material includes a Bibliography, List of Symbols, Index, and an Appendix with background in elementary set theory.
Harmonic Function Theory
Title | Harmonic Function Theory PDF eBook |
Author | Sheldon Axler |
Publisher | Springer Science & Business Media |
Pages | 266 |
Release | 2013-11-11 |
Genre | Mathematics |
ISBN | 1475781377 |
This book is about harmonic functions in Euclidean space. This new edition contains a completely rewritten chapter on spherical harmonics, a new section on extensions of Bochers Theorem, new exercises and proofs, as well as revisions throughout to improve the text. A unique software package supplements the text for readers who wish to explore harmonic function theory on a computer.
Functions of a Real Variable
Title | Functions of a Real Variable PDF eBook |
Author | N. Bourbaki |
Publisher | Springer Science & Business Media |
Pages | 343 |
Release | 2013-12-01 |
Genre | Mathematics |
ISBN | 3642593151 |
This is an English translation of Bourbaki’s Fonctions d'une Variable Réelle. Coverage includes: functions allowed to take values in topological vector spaces, asymptotic expansions are treated on a filtered set equipped with a comparison scale, theorems on the dependence on parameters of differential equations are directly applicable to the study of flows of vector fields on differential manifolds, etc.
Boundary Value Problems and Fourier Expansions
Title | Boundary Value Problems and Fourier Expansions PDF eBook |
Author | Charles R. MacCluer |
Publisher | Dover Publications |
Pages | 384 |
Release | 2013-12-20 |
Genre | |
ISBN | 9780486788678 |
Based on modern Sobolev methods, this text integrates numerical methods and symbolic manipulation into an elegant viewpoint that is consonant with implementation by digital computer. 2004 edition. Includes 64 figures. Exercises.
The Structure of Functions
Title | The Structure of Functions PDF eBook |
Author | Hans Triebel |
Publisher | Springer Science & Business Media |
Pages | 437 |
Release | 2012-12-13 |
Genre | Mathematics |
ISBN | 3034805691 |
This book deals with the constructive Weierstrassian approach to the theory of function spaces and various applications. The first chapter is devoted to a detailed study of quarkonial (subatomic) decompositions of functions and distributions on euclidean spaces, domains, manifolds and fractals. This approach combines the advantages of atomic and wavelet representations. It paves the way to sharp inequalities and embeddings in function spaces, spectral theory of fractal elliptic operators, and a regularity theory of some semi-linear equations. The book is self-contained, although some parts may be considered as a continuation of the author's book Fractals and Spectra. It is directed to mathematicians and (theoretical) physicists interested in the topics indicated and, in particular, how they are interrelated. - - - The book under review can be regarded as a continuation of [his book on "Fractals and spectra", 1997] (...) There are many sections named: comments, preparations, motivations, discussions and so on. These parts of the book seem to be very interesting and valuable. They help the reader to deal with the main course. (Mathematical Reviews)