Functional Equations in Mathematical Olympiads (2017 - 2018)
Title | Functional Equations in Mathematical Olympiads (2017 - 2018) PDF eBook |
Author | Amir Hossein Parvardi |
Publisher | |
Pages | 171 |
Release | 2018-05-29 |
Genre | |
ISBN | 9781983024467 |
Functional equations, which are a branch of algebraic problems used in mathematical competitions, appear in recent olympiads very frequently. The current book is the first volume in a series of books on collections of solved problems in functional equations. This volume contains 175 problems on the subject, including those used in latest mathematical olympiads (2017 - 2018) around the world. The basic concepts of functional equations and techniques of problem solving have been briefly discussed in the preamble of the book.
Introduction to Functional Equations
Title | Introduction to Functional Equations PDF eBook |
Author | Costas Efthimiou |
Publisher | American Mathematical Soc. |
Pages | 381 |
Release | 2011-10-13 |
Genre | Mathematics |
ISBN | 0821853147 |
Functions and their properties have been part of the rigorous precollege curriculum for decades. And functional equations have been a favorite topic of the leading national and international mathematical competitions. Yet the subject has not received equal attention by authors at an introductory level. The majority of the books on the topic remain unreachable to the curious and intelligent precollege student. The present book is an attempt to eliminate this disparity. The book opens with a review chapter on functions, which collects the relevant foundational information on functions, plus some material potentially new to the reader. The next chapter presents a working definition of functional equations and explains the difficulties in trying to systematize the theory. With each new chapter, the author presents methods for the solution of a particular group of equations. Each chapter is complemented with many solved examples, the majority of which are taken from mathematical competitions and professional journals. The book ends with a chapter of unsolved problems and some other auxiliary material. The book is an invaluable resource for precollege and college students who want to deepen their knowledge of functions and their properties, for teachers and instructors who wish to enrich their curricula, and for any lover of mathematical problem-solving techniques. In the interest of fostering a greater awareness and appreciation of mathematics and its connections to other disciplines and everyday life, MSRI and the AMS are publishing books in the Mathematical Circles Library series as a service to young people, their parents and teachers, and the mathematics profession.
Topics in Functional Equations
Title | Topics in Functional Equations PDF eBook |
Author | Titu Andreescu |
Publisher | |
Pages | 552 |
Release | 2020-01-15 |
Genre | |
ISBN | 9780999342862 |
Functional Equations and How to Solve Them
Title | Functional Equations and How to Solve Them PDF eBook |
Author | Christopher G. Small |
Publisher | Springer Science & Business Media |
Pages | 139 |
Release | 2007-04-03 |
Genre | Mathematics |
ISBN | 0387489010 |
Many books have been written on the theory of functional equations, but very few help readers solve functional equations in mathematics competitions and mathematical problem solving. This book fills that gap. Each chapter includes a list of problems associated with the covered material. These vary in difficulty, with the easiest being accessible to any high school student who has read the chapter carefully. The most difficult will challenge students studying for the International Mathematical Olympiad or the Putnam Competition. An appendix provides a springboard for further investigation of the concepts of limits, infinite series and continuity.
Euclidean Geometry in Mathematical Olympiads
Title | Euclidean Geometry in Mathematical Olympiads PDF eBook |
Author | Evan Chen |
Publisher | American Mathematical Soc. |
Pages | 311 |
Release | 2021-08-23 |
Genre | Education |
ISBN | 1470466201 |
This is a challenging problem-solving book in Euclidean geometry, assuming nothing of the reader other than a good deal of courage. Topics covered included cyclic quadrilaterals, power of a point, homothety, triangle centers; along the way the reader will meet such classical gems as the nine-point circle, the Simson line, the symmedian and the mixtilinear incircle, as well as the theorems of Euler, Ceva, Menelaus, and Pascal. Another part is dedicated to the use of complex numbers and barycentric coordinates, granting the reader both a traditional and computational viewpoint of the material. The final part consists of some more advanced topics, such as inversion in the plane, the cross ratio and projective transformations, and the theory of the complete quadrilateral. The exposition is friendly and relaxed, and accompanied by over 300 beautifully drawn figures. The emphasis of this book is placed squarely on the problems. Each chapter contains carefully chosen worked examples, which explain not only the solutions to the problems but also describe in close detail how one would invent the solution to begin with. The text contains a selection of 300 practice problems of varying difficulty from contests around the world, with extensive hints and selected solutions. This book is especially suitable for students preparing for national or international mathematical olympiads or for teachers looking for a text for an honor class.
Problem-Solving Strategies
Title | Problem-Solving Strategies PDF eBook |
Author | Arthur Engel |
Publisher | Springer Science & Business Media |
Pages | 404 |
Release | 2008-01-19 |
Genre | Mathematics |
ISBN | 0387226419 |
A unique collection of competition problems from over twenty major national and international mathematical competitions for high school students. Written for trainers and participants of contests of all levels up to the highest level, this will appeal to high school teachers conducting a mathematics club who need a range of simple to complex problems and to those instructors wishing to pose a "problem of the week", thus bringing a creative atmosphere into the classrooms. Equally, this is a must-have for individuals interested in solving difficult and challenging problems. Each chapter starts with typical examples illustrating the central concepts and is followed by a number of carefully selected problems and their solutions. Most of the solutions are complete, but some merely point to the road leading to the final solution. In addition to being a valuable resource of mathematical problems and solution strategies, this is the most complete training book on the market.
102 Combinatorial Problems
Title | 102 Combinatorial Problems PDF eBook |
Author | Titu Andreescu |
Publisher | Springer Science & Business Media |
Pages | 125 |
Release | 2013-11-27 |
Genre | Mathematics |
ISBN | 0817682228 |
"102 Combinatorial Problems" consists of carefully selected problems that have been used in the training and testing of the USA International Mathematical Olympiad (IMO) team. Key features: * Provides in-depth enrichment in the important areas of combinatorics by reorganizing and enhancing problem-solving tactics and strategies * Topics include: combinatorial arguments and identities, generating functions, graph theory, recursive relations, sums and products, probability, number theory, polynomials, theory of equations, complex numbers in geometry, algorithmic proofs, combinatorial and advanced geometry, functional equations and classical inequalities The book is systematically organized, gradually building combinatorial skills and techniques and broadening the student's view of mathematics. Aside from its practical use in training teachers and students engaged in mathematical competitions, it is a source of enrichment that is bound to stimulate interest in a variety of mathematical areas that are tangential to combinatorics.