Foliations and Geometric Structures
Title | Foliations and Geometric Structures PDF eBook |
Author | Aurel Bejancu |
Publisher | Springer Science & Business Media |
Pages | 309 |
Release | 2006-01-17 |
Genre | Mathematics |
ISBN | 1402037201 |
Offers basic material on distributions and foliations. This book introduces and builds the tools needed for studying the geometry of foliated manifolds. Its main theme is to investigate the interrelations between foliations of a manifold on the one hand, and the many geometric structures that the manifold may admit on the other hand.
Foliations and the Geometry of 3-Manifolds
Title | Foliations and the Geometry of 3-Manifolds PDF eBook |
Author | Danny Calegari |
Publisher | Oxford University Press on Demand |
Pages | 378 |
Release | 2007-05-17 |
Genre | Mathematics |
ISBN | 0198570082 |
This unique reference, aimed at research topologists, gives an exposition of the 'pseudo-Anosov' theory of foliations of 3-manifolds. This theory generalizes Thurston's theory of surface automorphisms and reveals an intimate connection between dynamics, geometry and topology in 3 dimensions. Significant themes returned to throughout the text include the importance of geometry, especially the hyperbolic geometry of surfaces, the importance of monotonicity, especially in1-dimensional and co-dimensional dynamics, and combinatorial approximation, using finite combinatorical objects such as train-tracks, branched surfaces and hierarchies to carry more complicated continuous objects.
Foliations II
Title | Foliations II PDF eBook |
Author | Alberto Candel |
Publisher | American Mathematical Soc. |
Pages | 562 |
Release | 2000 |
Genre | Mathematics |
ISBN | 0821808818 |
This is the second of two volumes on foliations (the first is Volume 23 of this series). In this volume, three specialized topics are treated: analysis on foliated spaces, characteristic classes of foliations, and foliated three-manifolds. Each of these topics represents deep interaction between foliation theory and another highly developed area of mathematics. In each case, the goal is to provide students and other interested people with a substantial introduction to the topic leading to further study using the extensive available literature.
Geometry, Dynamics And Topology Of Foliations: A First Course
Title | Geometry, Dynamics And Topology Of Foliations: A First Course PDF eBook |
Author | Bruno Scardua |
Publisher | World Scientific |
Pages | 194 |
Release | 2017-02-16 |
Genre | Mathematics |
ISBN | 9813207094 |
The Geometric Theory of Foliations is one of the fields in Mathematics that gathers several distinct domains: Topology, Dynamical Systems, Differential Topology and Geometry, among others. Its great development has allowed a better comprehension of several phenomena of mathematical and physical nature. Our book contains material dating from the origins of the theory of foliations, from the original works of C Ehresmann and G Reeb, up till modern developments.In a suitable choice of topics we are able to cover material in a coherent way bringing the reader to the heart of recent results in the field. A number of theorems, nowadays considered to be classical, like the Reeb Stability Theorem, Haefliger's Theorem, and Novikov Compact leaf Theorem, are proved in the text. The stability theorem of Thurston and the compact leaf theorem of Plante are also thoroughly proved. Nevertheless, these notes are introductory and cover only a minor part of the basic aspects of the rich theory of foliations.
Introduction to Foliations and Lie Groupoids
Title | Introduction to Foliations and Lie Groupoids PDF eBook |
Author | Ieke Moerdijk |
Publisher | |
Pages | 173 |
Release | 2003 |
Genre | Foliations (Mathematics) |
ISBN | 9780511071539 |
This book gives a quick introduction to the theory of foliations and Lie groupoids. It is based on the authors' extensive teaching experience and contains numerous examples and exercises making it ideal either for independent study or as the basis of a graduate course.
Geometry of Pseudo-Finsler Submanifolds
Title | Geometry of Pseudo-Finsler Submanifolds PDF eBook |
Author | Aurel Bejancu |
Publisher | Springer Science & Business Media |
Pages | 252 |
Release | 2013-04-17 |
Genre | Mathematics |
ISBN | 9401594171 |
This book begins with a new approach to the geometry of pseudo-Finsler manifolds. It also discusses the geometry of pseudo-Finsler manifolds and presents a comparison between the induced and the intrinsic Finsler connections. The Cartan, Berwald, and Rund connections are all investigated. Included also is the study of totally geodesic and other special submanifolds such as curves, surfaces, and hypersurfaces. Audience: The book will be of interest to researchers working on pseudo-Finsler geometry in general, and on pseudo-Finsler submanifolds in particular.
Riemannian Foliations
Title | Riemannian Foliations PDF eBook |
Author | Molino |
Publisher | Springer Science & Business Media |
Pages | 348 |
Release | 2012-12-06 |
Genre | Mathematics |
ISBN | 1468486705 |
Foliation theory has its origins in the global analysis of solutions of ordinary differential equations: on an n-dimensional manifold M, an [autonomous] differential equation is defined by a vector field X ; if this vector field has no singularities, then its trajectories form a par tition of M into curves, i.e. a foliation of codimension n - 1. More generally, a foliation F of codimension q on M corresponds to a partition of M into immersed submanifolds [the leaves] of dimension ,--------,- - . - -- p = n - q. The first global image that comes to mind is 1--------;- - - - - - that of a stack of "plaques". 1---------;- - - - - - Viewed laterally [transver 1--------1- - - -- sally], the leaves of such a 1--------1 - - - - -. stacking are the points of a 1--------1--- ----. quotient manifold W of di L..... -' _ mension q. -----~) W M Actually, this image corresponds to an elementary type of folia tion, that one says is "simple". For an arbitrary foliation, it is only l- u L ally [on a "simpIe" open set U] that the foliation appears as a stack of plaques and admits a local quotient manifold. Globally, a leaf L may - - return and cut a simple open set U in several plaques, sometimes even an infinite number of plaques.