Turbomachinery Fluid Dynamics and Heat Transfer
Title | Turbomachinery Fluid Dynamics and Heat Transfer PDF eBook |
Author | Hah |
Publisher | CRC Press |
Pages | 464 |
Release | 1997-02-04 |
Genre | Technology & Engineering |
ISBN | 9780824798291 |
This festschrift in honor of Professor Budugur Lakshminarayana's 60th birthday-based on the proceedings of a symposium on Turbomachinery Fluid Dynamics and Heat Transfer held recently at The Pennsylvania State University, University Park-provides authoritative and conclusive research results as well as new insights into complex flow features found in the turbomachinery used for propulsion, power, and industrial applications. Explaining in detail compressors, heat transfer fields in turbines, computational fluid dynamics, and unsteady flows, Turbomachinery Fluid Dynamics and Heat Transfer covers: Mixing mechanisms, annulus wall boundary layers, and the flow field in transonic turbocompressors The numerical implementation of turbulence models in a computer code Secondary flows, film cooling, and thermal turbulence modeling The visualization method of modeling using liquid crystals Innovative techniques in the computational modeling of compressor and turbine flows measurement in unsteady flows as well as axial flows and compressor noise generation And much more Generously illustrated and containing key bibliographic citations, Turbomachinery Fluid Dynamics and Heat Transfer is an indispensable resource for mechanical, design, aerospace, marine, manufacturing, materials, industrial, and reliability engineers; and upper-level undergraduate and graduate students in these disciplines.
Fluid Dynamics and Heat Transfer of Turbomachinery
Title | Fluid Dynamics and Heat Transfer of Turbomachinery PDF eBook |
Author | Budugur Lakshminarayana |
Publisher | John Wiley & Sons |
Pages | 846 |
Release | 1995-12-15 |
Genre | Technology & Engineering |
ISBN | 9780471855460 |
Over the past three decades, information in the aerospace and mechanical engineering fields in general and turbomachinery in particular has grown at an exponential rate. Fluid Dynamics and Heat Transfer of Turbomachinery is the first book, in one complete volume, to bring together the modern approaches and advances in the field, providing the most up-to-date, unified treatment available on basic principles, physical aspects of the aerothermal field, analysis, performance, theory, and computation of turbomachinery flow and heat transfer. Presenting a unified approach to turbomachinery fluid dynamics and aerothermodynamics, the book concentrates on the fluid dynamic aspects of flows and thermodynamic considerations rather than on those related to materials, structure, or mechanical aspects. It covers the latest material and all types of turbomachinery used in modern-day aircraft, automotive, marine, spacecraft, power, and industrial applications; and there is an entire chapter devoted to modern approaches on computation of turbomachinery flow. An additional chapter on turbine cooling and heat transfer is unique for a turbomachinery book. The author has undertaken a systematic approach, through more than three hundred illustrations, in developing the knowledge base. He uses analysis and data correlation in his discussion of most recent developments in this area, drawn from over nine hundred references and from research projects carried out by various organizations in the United States and abroad. This book is extremely useful for anyone involved in the analysis, design, and testing of turbomachinery. For students, it can be used as a two-semester course of senior undergraduate or graduate study: the first semester dealing with the basic principles and analysis of turbomachinery, the second exploring three-dimensional viscid flows, computation, and heat transfer. Many sections are quite general and applicable to other areas in fluid dynamics and heat transfer. The book can also be used as a self-study guide to those who want to acquire this knowledge. The ordered, meticulous, and unified approach of Fluid Dynamics and Heat Transfer of Turbomachinery should make the specialization of turbomachinery in aerospace and mechanical engineering much more accessible to students and professionals alike, in universities, industry, and government. Turbomachinery theory, performance, and analysis made accessible with a new, unified approach For the first time in nearly three decades, here is a completely up-to-date and unified approach to turbomachinery fluid dynamics and aerothermodynamics. Combining the latest advances, methods, and approaches in the field, Fluid Dynamics and Heat Transfer of Turbomachinery features: The most comprehensive and complete coverage of the fluid dynamics and aerothermodynamics of turbomachinery to date A spotlight on the fluid dynamic aspects of flows and the thermodynamic considerations for turbomachinery (rather than the structural or material aspects) A detailed, step-by-step presentation of the analytical and computational models involved, which allows the reader to easily construct a flowchart from which to operate Critical reviews of all the existing analytical and numerical models, highlighting the advantages and drawbacks of each Comprehensive coverage of turbine cooling and heat transfer, a unique feature for a book on turbomachinery An appendix of basic computation techniques, numerous tables, and listings of common terminology, abbreviations, and nomenclature Broad in scope, yet concise, and drawing on the author's teaching experience and research projects for government and industry, Fluid Dynamics and Heat Transfer of Turbomachinery explains and simplifies an increasingly complex field. It is an invaluable resource for undergraduate and graduate students in aerospace and mechanical engineering specializing in turbomachinery, for research and design engineers, and for all professionals who are—or wish to be—at the cutting edge of this technology.
Turbomachinery Fluid Dynamics and Heat Transfer
Title | Turbomachinery Fluid Dynamics and Heat Transfer PDF eBook |
Author | Hah |
Publisher | Routledge |
Pages | 464 |
Release | 2017-10-02 |
Genre | Technology & Engineering |
ISBN | 1351406647 |
This festschrift in honor of Professor Budugur Lakshminarayana's 60th birthday-based on the proceedings of a symposium on Turbomachinery Fluid Dynamics and Heat Transfer held recently at The Pennsylvania State University, University Park-provides authoritative and conclusive research results as well as new insights into complex flow features found in the turbomachinery used for propulsion, power, and industrial applications. Explaining in detail compressors, heat transfer fields in turbines, computational fluid dynamics, and unsteady flows, Turbomachinery Fluid Dynamics and Heat Transfer covers: Mixing mechanisms, annulus wall boundary layers, and the flow field in transonic turbocompressors The numerical implementation of turbulence models in a computer code Secondary flows, film cooling, and thermal turbulence modeling The visualization method of modeling using liquid crystals Innovative techniques in the computational modeling of compressor and turbine flows measurement in unsteady flows as well as axial flows and compressor noise generation And much more Generously illustrated and containing key bibliographic citations, Turbomachinery Fluid Dynamics and Heat Transfer is an indispensable resource for mechanical, design, aerospace, marine, manufacturing, materials, industrial, and reliability engineers; and upper-level undergraduate and graduate students in these disciplines.
Principles of Turbomachinery
Title | Principles of Turbomachinery PDF eBook |
Author | Seppo A. Korpela |
Publisher | John Wiley & Sons |
Pages | 592 |
Release | 2019-07-11 |
Genre | Science |
ISBN | 1119518083 |
A newly updated and expanded edition that combines theory and applications of turbomachinery while covering several different types of turbomachinery In mechanical engineering, turbomachinery describes machines that transfer energy between a rotor and a fluid, including turbines, compressors, and pumps. Aiming for a unified treatment of the subject matter, with consistent notation and concepts, this new edition of a highly popular book provides all new information on turbomachinery, and includes 50% more exercises than the previous edition. It allows readers to easily move from a study of the most successful textbooks on thermodynamics and fluid dynamics to the subject of turbomachinery. The book also builds concepts systematically as progress is made through each chapter so that the user can progress at their own pace. Principles of Turbomachinery, 2nd Edition provides comprehensive coverage of everything readers need to know, including chapters on: thermodynamics, compressible flow, and principles of turbomachinery analysis. The book also looks at steam turbines, axial turbines, axial compressors, centrifugal compressors and pumps, radial inflow turbines, hydraulic turbines, hydraulic transmission of power, and wind turbines. New chapters on droplet laden flows of steam and oblique shocks help make this an incredibly current and well-rounded resource for students and practicing engineers. Includes 50% more exercises than the previous edition Uses MATLAB or GNU/OCTAVE for all the examples and exercises for which computer calculations are needed, including those for steam Allows for a smooth transition from the study of thermodynamics, fluid dynamics, and heat transfer to the subject of turbomachinery for students and professionals Organizes content so that more difficult material is left to the later sections of each chapter, allowing instructors to customize and tailor their courses for their students Principles of Turbomachinery is an excellent book for students and professionals in mechanical, chemical, and aeronautical engineering.
Turbomachinery Fluid Dynamics and Heat Transfer
Title | Turbomachinery Fluid Dynamics and Heat Transfer PDF eBook |
Author | Hah |
Publisher | Routledge |
Pages | 464 |
Release | 2017-10-02 |
Genre | Technology & Engineering |
ISBN | 1351406639 |
This festschrift in honor of Professor Budugur Lakshminarayana's 60th birthday-based on the proceedings of a symposium on Turbomachinery Fluid Dynamics and Heat Transfer held recently at The Pennsylvania State University, University Park-provides authoritative and conclusive research results as well as new insights into complex flow features found in the turbomachinery used for propulsion, power, and industrial applications. Explaining in detail compressors, heat transfer fields in turbines, computational fluid dynamics, and unsteady flows, Turbomachinery Fluid Dynamics and Heat Transfer covers: Mixing mechanisms, annulus wall boundary layers, and the flow field in transonic turbocompressors The numerical implementation of turbulence models in a computer code Secondary flows, film cooling, and thermal turbulence modeling The visualization method of modeling using liquid crystals Innovative techniques in the computational modeling of compressor and turbine flows measurement in unsteady flows as well as axial flows and compressor noise generation And much more Generously illustrated and containing key bibliographic citations, Turbomachinery Fluid Dynamics and Heat Transfer is an indispensable resource for mechanical, design, aerospace, marine, manufacturing, materials, industrial, and reliability engineers; and upper-level undergraduate and graduate students in these disciplines.
Advanced Fluid Mechanics and Heat Transfer for Engineers and Scientists
Title | Advanced Fluid Mechanics and Heat Transfer for Engineers and Scientists PDF eBook |
Author | Meinhard T. Schobeiri |
Publisher | Springer Nature |
Pages | 602 |
Release | 2022-01-17 |
Genre | Technology & Engineering |
ISBN | 3030729257 |
The current book, Advanced Fluid Mechanics and Heat Transfer is based on author's four decades of industrial and academic research in the area of thermofluid sciences including fluid mechanics, aero-thermodynamics, heat transfer and their applications to engineering systems. Fluid mechanics and heat transfer are inextricably intertwined and both are two integral parts of one physical discipline. No problem from fluid mechanics that requires the calculation of the temperature can be solved using the system of Navier-Stokes and continuity equations only. Conversely, no heat transfer problem can be solved using the energy equation only without using the Navier-Stokes and continuity equations. The fact that there is no book treating this physical discipline as a unified subject in a single book that considers the need of the engineering and physics community, motivated the author to write this book. It is primarily aimed at students of engineering, physics and those practicing professionals who perform aero-thermo-heat transfer design tasks in the industry and would like to deepen their knowledge in this area. The contents of this new book covers the material required in Fluid Mechanics and Heat Transfer Graduate Core Courses in the US universities. It also covers the major parts of the Ph.D-level elective courses Advanced Fluid Mechanics and Heat Transfer that the author has been teaching at Texas A&M University for the past three decades.
The Design of High-Efficiency Turbomachinery and Gas Turbines, second edition, with a new preface
Title | The Design of High-Efficiency Turbomachinery and Gas Turbines, second edition, with a new preface PDF eBook |
Author | David Gordon Wilson |
Publisher | MIT Press |
Pages | 625 |
Release | 2014-09-12 |
Genre | Technology & Engineering |
ISBN | 0262526689 |
The second edition of a comprehensive textbook that introduces turbomachinery and gas turbines through design methods and examples. This comprehensive textbook is unique in its design-focused approach to turbomachinery and gas turbines. It offers students and practicing engineers methods for configuring these machines to perform with the highest possible efficiency. Examples and problems are based on the actual design of turbomachinery and turbines. After an introductory chapter that outlines the goals of the book and provides definitions of terms and parts, the book offers a brief review of the basic principles of thermodynamics and efficiency definitions. The rest of the book is devoted to the analysis and design of real turbomachinery configurations and gas turbines, based on a consistent application of thermodynamic theory and a more empirical treatment of fluid dynamics that relies on the extensive use of design charts. Topics include turbine power cycles, diffusion and diffusers, the analysis and design of three-dimensional free-stream flow, and combustion systems and combustion calculations. The second edition updates every chapter, adding material on subjects that include flow correlations, energy transfer in turbomachines, and three-dimensional design. A solutions manual is available for instructors. This new MIT Press edition makes a popular text available again, with corrections and some updates, to a wide audience of students, professors, and professionals.