A Two-dimensional Flamelet Model for Multiple Injections in Diesel Engines

A Two-dimensional Flamelet Model for Multiple Injections in Diesel Engines
Title A Two-dimensional Flamelet Model for Multiple Injections in Diesel Engines PDF eBook
Author Christian Wolfgang Hasse
Publisher Cuvillier Verlag
Pages 136
Release 2004
Genre
ISBN 3865372171

Download A Two-dimensional Flamelet Model for Multiple Injections in Diesel Engines Book in PDF, Epub and Kindle

A Multi-dimensional Flamelet Model for Ignition in Multi-feed Combustion Systems

A Multi-dimensional Flamelet Model for Ignition in Multi-feed Combustion Systems
Title A Multi-dimensional Flamelet Model for Ignition in Multi-feed Combustion Systems PDF eBook
Author Eric Michael Doran
Publisher Stanford University
Pages 162
Release 2011
Genre
ISBN

Download A Multi-dimensional Flamelet Model for Ignition in Multi-feed Combustion Systems Book in PDF, Epub and Kindle

This work develops a computational framework for modeling turbulent combustion in multi-feed systems that can be applied to internal combustion engines with multiple injections. In the first part of this work, the laminar flamelet equations are extended to two dimensions to enable the representation of a three-feed system that can be characterized by two mixture fractions. A coupling between the resulting equations and the turbulent flow field that enables the use of this method in unsteady simulations is then introduced. Models are developed to describe the scalar dissipation rates of each mixture fraction, which are the parameters that determine the influence of turbulent mixing on the flame structure. Furthermore, a new understanding of the function of the joint dissipation rate of both mixture fractions is discussed. Next, the extended flamelet equations are validated using Direct Numerical Simulations (DNS) of multi-stream ignition that employ detailed finite-rate chemistry. The results demonstrate that the ignition of the overall mixture is influenced by heat and mass transfer between the fuel streams and that this interaction is manifested as a front propagation in two-dimensional mixture fraction space. The flamelet model is shown to capture this behavior well and is therefore able to accurately describe the ignition process of each mixture. To provide closure between the flamelet chemistry and the turbulent flow field, information about the joint statistics of the two mixture fractions is required. An investigation of the joint probability density function (PDF) was carried out using DNS of two scalars mixing in stationary isotropic turbulence. It was found that available models for the joint PDF lack the ability to conserve all second-order moments necessary for an adequate description of the mixing field. A new five parameter bivariate beta distribution was therefore developed and shown to describe the joint PDF more accurately throughout the entire mixing time and for a wide range of initial conditions. Finally, the proposed model framework is applied in the simulation of a split-injection diesel engine and compared with experimental results. A range of operating points and different injection strategies are investigated. Comparisons with the experimental pressure traces show that the model is able to predict the ignition delay of each injection and the overall combustion process with good accuracy. These results indicate that the model is applicable to the range of regimes found in diesel combustion.

Fundamentals of Premixed Turbulent Combustion

Fundamentals of Premixed Turbulent Combustion
Title Fundamentals of Premixed Turbulent Combustion PDF eBook
Author Andrei Lipatnikov
Publisher CRC Press
Pages 548
Release 2012-10-24
Genre Science
ISBN 1466510250

Download Fundamentals of Premixed Turbulent Combustion Book in PDF, Epub and Kindle

Lean burning of premixed gases is considered to be a promising combustion technology for future clean and highly efficient gas turbine combustors. Yet researchers face several challenges in dealing with premixed turbulent combustion, from its nonlinear multiscale nature and the impact of local phenomena to the multitude of competing models. Filling

Annual Research Briefs ...

Annual Research Briefs ...
Title Annual Research Briefs ... PDF eBook
Author Center for Turbulence Research (U.S.)
Publisher
Pages 428
Release 2007
Genre Turbulence
ISBN

Download Annual Research Briefs ... Book in PDF, Epub and Kindle

Army Research Office and Air Force Office of Scientific Research: 2002 Contractors Meeting in Chemical Propulsion

Army Research Office and Air Force Office of Scientific Research: 2002 Contractors Meeting in Chemical Propulsion
Title Army Research Office and Air Force Office of Scientific Research: 2002 Contractors Meeting in Chemical Propulsion PDF eBook
Author David M. Mann
Publisher
Pages 186
Release 2002
Genre Science
ISBN

Download Army Research Office and Air Force Office of Scientific Research: 2002 Contractors Meeting in Chemical Propulsion Book in PDF, Epub and Kindle

Abstracts are given for 6.1 basic research in chemical propulsion sponsored by the Army Research Office and the Air Force Office of Scientific Research.

Turbulent Combustion Modeling

Turbulent Combustion Modeling
Title Turbulent Combustion Modeling PDF eBook
Author Tarek Echekki
Publisher Springer Science & Business Media
Pages 496
Release 2010-12-25
Genre Technology & Engineering
ISBN 9400704127

Download Turbulent Combustion Modeling Book in PDF, Epub and Kindle

Turbulent combustion sits at the interface of two important nonlinear, multiscale phenomena: chemistry and turbulence. Its study is extremely timely in view of the need to develop new combustion technologies in order to address challenges associated with climate change, energy source uncertainty, and air pollution. Despite the fact that modeling of turbulent combustion is a subject that has been researched for a number of years, its complexity implies that key issues are still eluding, and a theoretical description that is accurate enough to make turbulent combustion models rigorous and quantitative for industrial use is still lacking. In this book, prominent experts review most of the available approaches in modeling turbulent combustion, with particular focus on the exploding increase in computational resources that has allowed the simulation of increasingly detailed phenomena. The relevant algorithms are presented, the theoretical methods are explained, and various application examples are given. The book is intended for a relatively broad audience, including seasoned researchers and graduate students in engineering, applied mathematics and computational science, engine designers and computational fluid dynamics (CFD) practitioners, scientists at funding agencies, and anyone wishing to understand the state-of-the-art and the future directions of this scientifically challenging and practically important field.

Turbulent Combustion

Turbulent Combustion
Title Turbulent Combustion PDF eBook
Author Norbert Peters
Publisher Cambridge University Press
Pages 322
Release 2000-08-15
Genre Science
ISBN 1139428063

Download Turbulent Combustion Book in PDF, Epub and Kindle

The combustion of fossil fuels remains a key technology for the foreseeable future. It is therefore important that we understand the mechanisms of combustion and, in particular, the role of turbulence within this process. Combustion always takes place within a turbulent flow field for two reasons: turbulence increases the mixing process and enhances combustion, but at the same time combustion releases heat which generates flow instability through buoyancy, thus enhancing the transition to turbulence. The four chapters of this book present a thorough introduction to the field of turbulent combustion. After an overview of modeling approaches, the three remaining chapters consider the three distinct cases of premixed, non-premixed, and partially premixed combustion, respectively. This book will be of value to researchers and students of engineering and applied mathematics by demonstrating the current theories of turbulent combustion within a unified presentation of the field.