Finsler Metrics - A Global Approach

Finsler Metrics - A Global Approach
Title Finsler Metrics - A Global Approach PDF eBook
Author Marco Abate
Publisher Springer
Pages 185
Release 2006-11-15
Genre Mathematics
ISBN 354048812X

Download Finsler Metrics - A Global Approach Book in PDF, Epub and Kindle

Complex Finsler metrics appear naturally in complex analysis. To develop new tools in this area, the book provides a graduate-level introduction to differential geometry of complex Finsler metrics. After reviewing real Finsler geometry stressing global results, complex Finsler geometry is presented introducing connections, Kählerianity, geodesics, curvature. Finally global geometry and complex Monge-Ampère equations are discussed for Finsler manifolds with constant holomorphic curvature, which are important in geometric function theory. Following E. Cartan, S.S. Chern and S. Kobayashi, the global approach carries the full strength of hermitian geometry of vector bundles avoiding cumbersome computations, and thus fosters applications in other fields.

Finsler Geometry

Finsler Geometry
Title Finsler Geometry PDF eBook
Author Xinyue Cheng
Publisher Springer Science & Business Media
Pages 149
Release 2013-01-29
Genre Mathematics
ISBN 3642248888

Download Finsler Geometry Book in PDF, Epub and Kindle

"Finsler Geometry: An Approach via Randers Spaces" exclusively deals with a special class of Finsler metrics -- Randers metrics, which are defined as the sum of a Riemannian metric and a 1-form. Randers metrics derive from the research on General Relativity Theory and have been applied in many areas of the natural sciences. They can also be naturally deduced as the solution of the Zermelo navigation problem. The book provides readers not only with essential findings on Randers metrics but also the core ideas and methods which are useful in Finsler geometry. It will be of significant interest to researchers and practitioners working in Finsler geometry, even in differential geometry or related natural fields. Xinyue Cheng is a Professor at the School of Mathematics and Statistics of Chongqing University of Technology, China. Zhongmin Shen is a Professor at the Department of Mathematical Sciences of Indiana University Purdue University, USA.

Lectures On Finsler Geometry

Lectures On Finsler Geometry
Title Lectures On Finsler Geometry PDF eBook
Author Zhongmin Shen
Publisher World Scientific
Pages 323
Release 2001-05-22
Genre Mathematics
ISBN 9814491659

Download Lectures On Finsler Geometry Book in PDF, Epub and Kindle

In 1854, B Riemann introduced the notion of curvature for spaces with a family of inner products. There was no significant progress in the general case until 1918, when P Finsler studied the variation problem in regular metric spaces. Around 1926, L Berwald extended Riemann's notion of curvature to regular metric spaces and introduced an important non-Riemannian curvature using his connection for regular metrics. Since then, Finsler geometry has developed steadily. In his Paris address in 1900, D Hilbert formulated 23 problems, the 4th and 23rd problems being in Finsler's category. Finsler geometry has broader applications in many areas of science and will continue to develop through the efforts of many geometers around the world.Usually, the methods employed in Finsler geometry involve very complicated tensor computations. Sometimes this discourages beginners. Viewing Finsler spaces as regular metric spaces, the author discusses the problems from the modern metric geometry point of view. The book begins with the basics on Finsler spaces, including the notions of geodesics and curvatures, then deals with basic comparison theorems on metrics and measures and their applications to the Levy concentration theory of regular metric measure spaces and Gromov's Hausdorff convergence theory.

Finsler Geometry

Finsler Geometry
Title Finsler Geometry PDF eBook
Author David Dai-Wai Bao
Publisher American Mathematical Soc.
Pages 338
Release 1996
Genre Mathematics
ISBN 082180507X

Download Finsler Geometry Book in PDF, Epub and Kindle

This volume features proceedings from the 1995 Joint Summer Research Conference on Finsler Geometry, chaired by S. S. Chern and co-chaired by D. Bao and Z. Shen. The editors of this volume have provided comprehensive and informative "capsules" of presentations and technical reports. This was facilitated by classifying the papers into the following 6 separate sections - 3 of which are applied and 3 are pure: * Finsler Geometry over the reals * Complex Finsler geometry * Generalized Finsler metrics * Applications to biology, engineering, and physics * Applications to control theory * Applications to relativistic field theory Each section contains a preface that provides a coherent overview of the topic and includes an outline of the current directions of research and new perspectives. A short list of open problems concludes each contributed paper. A number of photos are featured in the volumes, for example, that of Finsler. In addition, conference participants are also highlighted.

Comparison Finsler Geometry

Comparison Finsler Geometry
Title Comparison Finsler Geometry PDF eBook
Author Shin-ichi Ohta
Publisher Springer Nature
Pages 324
Release 2021-10-09
Genre Mathematics
ISBN 3030806502

Download Comparison Finsler Geometry Book in PDF, Epub and Kindle

This monograph presents recent developments in comparison geometry and geometric analysis on Finsler manifolds. Generalizing the weighted Ricci curvature into the Finsler setting, the author systematically derives the fundamental geometric and analytic inequalities in the Finsler context. Relying only upon knowledge of differentiable manifolds, this treatment offers an accessible entry point to Finsler geometry for readers new to the area. Divided into three parts, the book begins by establishing the fundamentals of Finsler geometry, including Jacobi fields and curvature tensors, variation formulas for arc length, and some classical comparison theorems. Part II goes on to introduce the weighted Ricci curvature, nonlinear Laplacian, and nonlinear heat flow on Finsler manifolds. These tools allow the derivation of the Bochner–Weitzenböck formula and the corresponding Bochner inequality, gradient estimates, Bakry–Ledoux’s Gaussian isoperimetric inequality, and functional inequalities in the Finsler setting. Part III comprises advanced topics: a generalization of the classical Cheeger–Gromoll splitting theorem, the curvature-dimension condition, and the needle decomposition. Throughout, geometric descriptions illuminate the intuition behind the results, while exercises provide opportunities for active engagement. Comparison Finsler Geometry offers an ideal gateway to the study of Finsler manifolds for graduate students and researchers. Knowledge of differentiable manifold theory is assumed, along with the fundamentals of functional analysis. Familiarity with Riemannian geometry is not required, though readers with a background in the area will find their insights are readily transferrable.

A Sampler of Riemann-Finsler Geometry

A Sampler of Riemann-Finsler Geometry
Title A Sampler of Riemann-Finsler Geometry PDF eBook
Author David Dai-Wai Bao
Publisher Cambridge University Press
Pages 384
Release 2004-11
Genre Mathematics
ISBN 9780521831819

Download A Sampler of Riemann-Finsler Geometry Book in PDF, Epub and Kindle

These expository accounts treat issues related to volume, geodesics, curvature and mathematical biology, with instructive examples.

Complex Spaces in Finsler, Lagrange and Hamilton Geometries

Complex Spaces in Finsler, Lagrange and Hamilton Geometries
Title Complex Spaces in Finsler, Lagrange and Hamilton Geometries PDF eBook
Author Gheorghe Munteanu
Publisher Springer Science & Business Media
Pages 237
Release 2012-11-03
Genre Mathematics
ISBN 1402022069

Download Complex Spaces in Finsler, Lagrange and Hamilton Geometries Book in PDF, Epub and Kindle

From a historical point of view, the theory we submit to the present study has its origins in the famous dissertation of P. Finsler from 1918 ([Fi]). In a the classical notion also conventional classification, Finsler geometry has besides a number of generalizations, which use the same work technique and which can be considered self-geometries: Lagrange and Hamilton spaces. Finsler geometry had a period of incubation long enough, so that few math ematicians (E. Cartan, L. Berwald, S.S. Chem, H. Rund) had the patience to penetrate into a universe of tensors, which made them compare it to a jungle. To aU of us, who study nowadays Finsler geometry, it is obvious that the qualitative leap was made in the 1970's by the crystallization of the nonlinear connection notion (a notion which is almost as old as Finsler space, [SZ4]) and by work-skills into its adapted frame fields. The results obtained by M. Matsumoto (coUected later, in 1986, in a monograph, [Ma3]) aroused interest not only in Japan, but also in other countries such as Romania, Hungary, Canada and the USA, where schools of Finsler geometry are founded and are presently widely recognized.