Ferroelectric Domain Walls

Ferroelectric Domain Walls
Title Ferroelectric Domain Walls PDF eBook
Author Jill Guyonnet
Publisher Springer Science & Business Media
Pages 167
Release 2014-04-08
Genre Science
ISBN 3319057502

Download Ferroelectric Domain Walls Book in PDF, Epub and Kindle

Using the nano metric resolution of atomic force microscopy techniques, this work explores the rich fundamental physics and novel functionalities of domain walls in ferroelectric materials, the nano scale interfaces separating regions of differently oriented spontaneous polarization. Due to the local symmetry-breaking caused by the change in polarization, domain walls are found to possess an unexpected lateral piezoelectric response, even when this is symmetry-forbidden in the parent material. This has interesting potential applications in electromechanical devices based on ferroelectric domain patterning. Moreover, electrical conduction is shown to arise at domain walls in otherwise insulating lead zirconate titanate, the first such observation outside of multiferroic bismuth ferrite, due to the tendency of the walls to localize defects. The role of defects is then explored in the theoretical framework of disordered elastic interfaces possessing a characteristic roughness scaling and complex dynamic response. It is shown that the heterogeneous disorder landscape in ferroelectric thin films leads to a breakdown of the usual self-affine roughness, possibly related to strong pinning at individual defects. Finally, the roles of varying environmental conditions and defect densities in domain switching are explored and shown to be adequately modelled as a competition between screening effects and pinning.

Domain Walls

Domain Walls
Title Domain Walls PDF eBook
Author Dennis Meier
Publisher Oxford University Press
Pages 288
Release 2020-08-07
Genre Science
ISBN 0192607413

Download Domain Walls Book in PDF, Epub and Kindle

Technological evolution and revolution are both driven by the discovery of new functionalities, new materials and the design of yet smaller, faster, and more energy-efficient components. Progress is being made at a breathtaking pace, stimulated by the rapidly growing demand for more powerful and readily available information technology. High-speed internet and data-streaming, home automation, tablets and smartphones are now "necessities" for our everyday lives. Consumer expectations for progressively more data storage and exchange appear to be insatiable. Oxide electronics is a promising and relatively new field that has the potential to trigger major advances in information technology. Oxide interfaces are particularly intriguing. Here, low local symmetry combined with an increased susceptibility to external fields leads to unusual physical properties distinct from those of the homogeneous bulk. In this context, ferroic domain walls have attracted recent attention as a completely new type of oxide interface. In addition to their functional properties, such walls are spatially mobile and can be created, moved, and erased on demand. This unique degree of flexibility enables domain walls to take an active role in future devices and hold a great potential as multifunctional 2D systems for nanoelectronics. With domain walls as reconfigurable electronic 2D components, a new generation of adaptive nano-technology and flexible circuitry becomes possible, that can be altered and upgraded throughout the lifetime of the device. Thus, what started out as fundamental research, at the limit of accessibility, is finally maturing into a promising concept for next-generation technology.

Domains in Ferroic Crystals and Thin Films

Domains in Ferroic Crystals and Thin Films
Title Domains in Ferroic Crystals and Thin Films PDF eBook
Author Alexander Tagantsev
Publisher Springer Science & Business Media
Pages 828
Release 2011-03-02
Genre Science
ISBN 1441914226

Download Domains in Ferroic Crystals and Thin Films Book in PDF, Epub and Kindle

At present, the marketplace for professionals, researchers, and graduate students in solid-state physics and materials science lacks a book that presents a comprehensive discussion of ferroelectrics and related materials in a form that is suitable for experimentalists and engineers. This book proposes to present a wide coverage of domain-related issues concerning these materials. This coverage includes selected theoretical topics (which are covered in the existing literature) in addition to a plethora of experimental data which occupies over half of the book. The book presents experimental findings and theoretical understanding of ferroic (non-magnetic) domains developed during the past 60 years. It addresses the situation by looking specifically at bulk crystals and thin films, with a particular focus on recently-developed microelectronic applications and methods for observations of domains with techniques such as scanning force microscopy, polarized light microscopy, scanning optical microscopy, electron microscopy, and surface decorating techniques. "Domains in Ferroic Crystals and Thin Films" covers a large area of material properties and effects connected with static and dynamic properties of domains, which are extremely relevant to materials referred to as ferroics. In other textbooks on solid state physics, one large group of ferroics is customarily covered: those in which magnetic properties play a dominant role. Numerous books are specifically devoted to magnetic ferroics and cover a wide spectrum of magnetic domain phenomena. In contrast, "Domains in Ferroic Crystals and Thin Films" concentrates on domain-related phenomena in nonmagnetic ferroics. These materials are still inadequately represented in solid state physics textbooks and monographs.

Topological Structures in Ferroic Materials

Topological Structures in Ferroic Materials
Title Topological Structures in Ferroic Materials PDF eBook
Author Jan Seidel
Publisher Springer
Pages 249
Release 2016-02-12
Genre Science
ISBN 3319253018

Download Topological Structures in Ferroic Materials Book in PDF, Epub and Kindle

This book provides a state-of-the art overview of a highly interesting emerging research field in solid state physics/nanomaterials science, topological structures in ferroic materials. Topological structures in ferroic materials have received strongly increasing attention in the last few years. Such structures include domain walls, skyrmions and vortices, which can form in ferroelectric, magnetic, ferroelastic or multiferroic materials. These topological structures can have completely different properties from the bulk material they form in. They also can be controlled by external fields (electrical, magnetic, strain) or currents, which makes them interesting from a fundamental research point of view as well as for potential novel nanomaterials applications. To provide a comprehensive overview, international leading researches in these fields contributed review-like chapters about their own work and the work of other researchers to provide a current view of this highly interesting topic.

Ferroelectric Thin Films

Ferroelectric Thin Films
Title Ferroelectric Thin Films PDF eBook
Author Carlos Paz de Araujo
Publisher Taylor & Francis
Pages 596
Release 1996
Genre Technology & Engineering
ISBN 9782884491891

Download Ferroelectric Thin Films Book in PDF, Epub and Kindle

The impetus for the rapid development of thin film technology, relative to that of bulk materials, is its application to a variety of microelectronic products. Many of the characteristics of thin film ferroelectric materials are utilized in the development of these products - namely, their nonvolatile memory and piezoelectric, pyroelectric, and electro-optic properties. It is befitting, therefore, that the first of a set of three complementary books with the general title Integrated Ferroelectric Devices and Technologies focuses on the synthesis of thin film ferroelectric materials and their basic properties. Because it is a basic introduction to the chemistry, materials science, processing, and physics of the materials from which integrated ferroelectrics are made, newcomers to this field as well as veterans will find this book self-contained and invaluable in acquiring the diverse elements requisite to success in their work in this area. It is directed at electronic engineers and physicists as well as process and system engineers, ceramicists, and chemists involved in the research, design, development, manufacturing, and utilization of thin film ferroelectric materials.

Ferroelectrics and Their Applications

Ferroelectrics and Their Applications
Title Ferroelectrics and Their Applications PDF eBook
Author Husein Irzaman
Publisher BoD – Books on Demand
Pages 166
Release 2018-10-03
Genre Science
ISBN 1789840139

Download Ferroelectrics and Their Applications Book in PDF, Epub and Kindle

Ferroelectricity is a symptom of inevitable electrical polarization changes in materials without external electric field interference. Ferroelectricity is a phenomenon exhibited by crystals with a spontaneous polarization and hysteresis effects associated with dielectric changes when an electric field is given. Our fascination with ferroelectricity is in recognition of a beautiful article by Itskovsky, in which he explains the kinetics of a ferroelectric phase transition in a thin ferroelectric layer (film). We have been researching ferroelectric materials since 2001. There are several materials known for their ferroelectric properties. Barium titanate and barium strontium titanate are the most well known. Several others include tantalum oxide, lead zirconium titanate, gallium nitride, lithium tantalate, aluminium, copper oxide, and lithium niobate. There is still a blue ocean of ferroelectric applications yet to be expounded. It is and hopefully always will be a bright future.

Physics of Ferroelectrics

Physics of Ferroelectrics
Title Physics of Ferroelectrics PDF eBook
Author Karin M. Rabe
Publisher Springer Science & Business Media
Pages 395
Release 2007-07-20
Genre Technology & Engineering
ISBN 3540345914

Download Physics of Ferroelectrics Book in PDF, Epub and Kindle

The past two decades have witnessed revolutionary breakthroughs in the understanding of ferroelectric materials, both from the perspective of theory and experiment. This book addresses the paradigmatic shifts in understanding brought about by these breakthroughs, including the consideration of novel fabrication methods and nanoscale applications of these materials, and new theoretical methods such as the effective Hamiltonian approach and density functional theory.