Exploring Mathematical Modeling in Biology Through Case Studies and Experimental Activities

Exploring Mathematical Modeling in Biology Through Case Studies and Experimental Activities
Title Exploring Mathematical Modeling in Biology Through Case Studies and Experimental Activities PDF eBook
Author Rebecca Sanft
Publisher Academic Press
Pages 262
Release 2020-03-30
Genre Science
ISBN 0128195967

Download Exploring Mathematical Modeling in Biology Through Case Studies and Experimental Activities Book in PDF, Epub and Kindle

Exploring Mathematical Modeling in Biology through Case Studies and Experimental Activities provides supporting materials for courses taken by students majoring in mathematics, computer science or in the life sciences. The book's cases and lab exercises focus on hypothesis testing and model development in the context of real data. The supporting mathematical, coding and biological background permit readers to explore a problem, understand assumptions, and the meaning of their results. The experiential components provide hands-on learning both in the lab and on the computer. As a beginning text in modeling, readers will learn to value the approach and apply competencies in other settings. Included case studies focus on building a model to solve a particular biological problem from concept and translation into a mathematical form, to validating the parameters, testing the quality of the model and finally interpreting the outcome in biological terms. The book also shows how particular mathematical approaches are adapted to a variety of problems at multiple biological scales. Finally, the labs bring the biological problems and the practical issues of collecting data to actually test the model and/or adapting the mathematics to the data that can be collected. - Presents a single volume on mathematics and biological examples, with data and wet lab experiences suitable for non-experts - Contains three real-world biological case studies and one wet lab for application of the mathematical models - Includes R code templates throughout the text, which are also available through an online repository, along with the necessary data files to complete all projects and labs

Control Theory in Biomedical Engineering

Control Theory in Biomedical Engineering
Title Control Theory in Biomedical Engineering PDF eBook
Author Olfa Boubaker
Publisher Academic Press
Pages 398
Release 2020-06-30
Genre Technology & Engineering
ISBN 0128226218

Download Control Theory in Biomedical Engineering Book in PDF, Epub and Kindle

Control Theory in Biomedical Engineering: Applications in Physiology and Medical Robotics highlights the importance of control theory and feedback control in our lives and explains how this theory is central to future medical developments. Control theory is fundamental for understanding feedback paths in physiological systems (endocrine system, immune system, neurological system) and a concept for building artificial organs. The book is suitable for graduate students and researchers in the control engineering and biomedical engineering fields, and medical students and practitioners seeking to enhance their understanding of physiological processes, medical robotics (legs, hands, knees), and controlling artificial devices (pacemakers, insulin injection devices).Control theory profoundly impacts the everyday lives of a large part of the human population including the disabled and the elderly who use assistive and rehabilitation robots for improving the quality of their lives and increasing their independence. - Gives an overview of state-of-the-art control theory in physiology, emphasizing the importance of this theory in the medical field through concrete examples, e.g., endocrine, immune, and neurological systems - Takes a comprehensive look at advances in medical robotics and rehabilitation devices and presents case studies focusing on their feedback control - Presents the significance of control theory in the pervasiveness of medical robots in surgery, exploration, diagnosis, therapy, and rehabilitation

Mathematical Modeling in Systems Biology

Mathematical Modeling in Systems Biology
Title Mathematical Modeling in Systems Biology PDF eBook
Author Brian P. Ingalls
Publisher MIT Press
Pages 423
Release 2022-06-07
Genre Science
ISBN 0262545829

Download Mathematical Modeling in Systems Biology Book in PDF, Epub and Kindle

An introduction to the mathematical concepts and techniques needed for the construction and analysis of models in molecular systems biology. Systems techniques are integral to current research in molecular cell biology, and system-level investigations are often accompanied by mathematical models. These models serve as working hypotheses: they help us to understand and predict the behavior of complex systems. This book offers an introduction to mathematical concepts and techniques needed for the construction and interpretation of models in molecular systems biology. It is accessible to upper-level undergraduate or graduate students in life science or engineering who have some familiarity with calculus, and will be a useful reference for researchers at all levels. The first four chapters cover the basics of mathematical modeling in molecular systems biology. The last four chapters address specific biological domains, treating modeling of metabolic networks, of signal transduction pathways, of gene regulatory networks, and of electrophysiology and neuronal action potentials. Chapters 3–8 end with optional sections that address more specialized modeling topics. Exercises, solvable with pen-and-paper calculations, appear throughout the text to encourage interaction with the mathematical techniques. More involved end-of-chapter problem sets require computational software. Appendixes provide a review of basic concepts of molecular biology, additional mathematical background material, and tutorials for two computational software packages (XPPAUT and MATLAB) that can be used for model simulation and analysis.

Annual Report

Annual Report
Title Annual Report PDF eBook
Author National Cancer Institute (U.S.). Division of Cancer Etiology
Publisher
Pages 346
Release 1989
Genre Cancer
ISBN

Download Annual Report Book in PDF, Epub and Kindle

An Introduction to Mathematical Modeling

An Introduction to Mathematical Modeling
Title An Introduction to Mathematical Modeling PDF eBook
Author Edward A. Bender
Publisher Courier Corporation
Pages 273
Release 2012-05-23
Genre Mathematics
ISBN 0486137120

Download An Introduction to Mathematical Modeling Book in PDF, Epub and Kindle

Employing a practical, "learn by doing" approach, this first-rate text fosters the development of the skills beyond the pure mathematics needed to set up and manipulate mathematical models. The author draws on a diversity of fields — including science, engineering, and operations research — to provide over 100 reality-based examples. Students learn from the examples by applying mathematical methods to formulate, analyze, and criticize models. Extensive documentation, consisting of over 150 references, supplements the models, encouraging further research on models of particular interest. The lively and accessible text requires only minimal scientific background. Designed for senior college or beginning graduate-level students, it assumes only elementary calculus and basic probability theory for the first part, and ordinary differential equations and continuous probability for the second section. All problems require students to study and create models, encouraging their active participation rather than a mechanical approach. Beyond the classroom, this volume will prove interesting and rewarding to anyone concerned with the development of mathematical models or the application of modeling to problem solving in a wide array of applications.

Collective Animal Behavior

Collective Animal Behavior
Title Collective Animal Behavior PDF eBook
Author David J. T. Sumpter
Publisher Princeton University Press
Pages 313
Release 2010-09-27
Genre Science
ISBN 1400837103

Download Collective Animal Behavior Book in PDF, Epub and Kindle

How and why animals produce group behaviors Fish travel in schools, birds migrate in flocks, honeybees swarm, and ants build trails. How and why do these collective behaviors occur? Exploring how coordinated group patterns emerge from individual interactions, Collective Animal Behavior reveals why animals produce group behaviors and examines their evolution across a range of species. Providing a synthesis of mathematical modeling, theoretical biology, and experimental work, David Sumpter investigates how animals move and arrive together, how they transfer information, how they make decisions and synchronize their activities, and how they build collective structures. Sumpter constructs a unified appreciation of how different group-living species coordinate their behaviors and why natural selection has produced these groups. For the first time, the book combines traditional approaches to behavioral ecology with ideas about self-organization and complex systems from physics and mathematics. Sumpter offers a guide for working with key models in this area along with case studies of their application, and he shows how ideas about animal behavior can be applied to understanding human social behavior. Containing a wealth of accessible examples as well as qualitative and quantitative features, Collective Animal Behavior will interest behavioral ecologists and all scientists studying complex systems.

Modeling Life

Modeling Life
Title Modeling Life PDF eBook
Author Alan Garfinkel
Publisher Springer
Pages 456
Release 2017-09-06
Genre Mathematics
ISBN 3319597310

Download Modeling Life Book in PDF, Epub and Kindle

This book develops the mathematical tools essential for students in the life sciences to describe interacting systems and predict their behavior. From predator-prey populations in an ecosystem, to hormone regulation within the body, the natural world abounds in dynamical systems that affect us profoundly. Complex feedback relations and counter-intuitive responses are common in nature; this book develops the quantitative skills needed to explore these interactions. Differential equations are the natural mathematical tool for quantifying change, and are the driving force throughout this book. The use of Euler’s method makes nonlinear examples tractable and accessible to a broad spectrum of early-stage undergraduates, thus providing a practical alternative to the procedural approach of a traditional Calculus curriculum. Tools are developed within numerous, relevant examples, with an emphasis on the construction, evaluation, and interpretation of mathematical models throughout. Encountering these concepts in context, students learn not only quantitative techniques, but how to bridge between biological and mathematical ways of thinking. Examples range broadly, exploring the dynamics of neurons and the immune system, through to population dynamics and the Google PageRank algorithm. Each scenario relies only on an interest in the natural world; no biological expertise is assumed of student or instructor. Building on a single prerequisite of Precalculus, the book suits a two-quarter sequence for first or second year undergraduates, and meets the mathematical requirements of medical school entry. The later material provides opportunities for more advanced students in both mathematics and life sciences to revisit theoretical knowledge in a rich, real-world framework. In all cases, the focus is clear: how does the math help us understand the science?