Gas Turbine Heat Transfer and Cooling Technology, Second Edition
Title | Gas Turbine Heat Transfer and Cooling Technology, Second Edition PDF eBook |
Author | Je-Chin Han |
Publisher | CRC Press |
Pages | 892 |
Release | 2012-11-27 |
Genre | Science |
ISBN | 1439855684 |
A comprehensive reference for engineers and researchers, Gas Turbine Heat Transfer and Cooling Technology, Second Edition has been completely revised and updated to reflect advances in the field made during the past ten years. The second edition retains the format that made the first edition so popular and adds new information mainly based on selected published papers in the open literature. See What’s New in the Second Edition: State-of-the-art cooling technologies such as advanced turbine blade film cooling and internal cooling Modern experimental methods for gas turbine heat transfer and cooling research Advanced computational models for gas turbine heat transfer and cooling performance predictions Suggestions for future research in this critical technology The book discusses the need for turbine cooling, gas turbine heat-transfer problems, and cooling methodology and covers turbine rotor and stator heat-transfer issues, including endwall and blade tip regions under engine conditions, as well as under simulated engine conditions. It then examines turbine rotor and stator blade film cooling and discusses the unsteady high free-stream turbulence effect on simulated cascade airfoils. From here, the book explores impingement cooling, rib-turbulent cooling, pin-fin cooling, and compound and new cooling techniques. It also highlights the effect of rotation on rotor coolant passage heat transfer. Coverage of experimental methods includes heat-transfer and mass-transfer techniques, liquid crystal thermography, optical techniques, as well as flow and thermal measurement techniques. The book concludes with discussions of governing equations and turbulence models and their applications for predicting turbine blade heat transfer and film cooling, and turbine blade internal cooling.
Heat Transfer in Gas Turbines
Title | Heat Transfer in Gas Turbines PDF eBook |
Author | Bengt Sundén |
Publisher | Witpress |
Pages | 544 |
Release | 2001 |
Genre | Medical |
ISBN |
This title presents and reflects current active research on various heat transfer topics and related phenomena in gas turbine systems. It begins with a general introduction to gas turbine heat transfer, before moving on to specific areas.
Journal of Thermophysics and Heat Transfer
Title | Journal of Thermophysics and Heat Transfer PDF eBook |
Author | |
Publisher | |
Pages | 868 |
Release | 2007 |
Genre | Heat |
ISBN |
This journal is devoted to the advancement of the science and technology of thermophysics and heat transfer through the dissemination of original research papers disclosing new technical knowledge and exploratory developments and applications based on new knowledge. It publishes papers that deal with the properties and mechanisms involved in thermal energy transfer and storage in gases, liquids, and solids or combinations thereof. These studies include conductive, convective, and radiative modes alone or in combination and the effects of the environment.
Advances in Heat Transfer
Title | Advances in Heat Transfer PDF eBook |
Author | |
Publisher | Academic Press |
Pages | 336 |
Release | 2017-11-11 |
Genre | Technology & Engineering |
ISBN | 0128124121 |
Advances in Heat Transfer, Volume 49 provides in-depth review articles from a broader scope than in traditional journals or texts. Topics covered in this new volume include Heat Transfer in Rotating Cooling Channel, Flow Boiling and Flow Condensation in Reduced Gravity, Advances in Gas Turbine Cooling, and Advanced Heat Transfer Topics in Complex Duct Flows. While the articles in this series will be of great interest to mechanical, chemical and industrial engineers working in the field of heat transfer, the book is also ideal for those in graduate schools or industry, and even non-specialists interested in the latest research. - Compiles the expert opinions of leaders in the industry - Fills the information gap between regularly scheduled journals and university-level textbooks by providing in-depth review articles over a broader scope than in traditional journals or texts - Essential reading for all mechanical, chemical and industrial engineers working in the field of heat transfer, or in graduate schools or industry
Advanced Computational Methods and Experiments in Heat Transfer XII
Title | Advanced Computational Methods and Experiments in Heat Transfer XII PDF eBook |
Author | B. Sundén |
Publisher | WIT Press |
Pages | 377 |
Release | 2012-06-27 |
Genre | Technology & Engineering |
ISBN | 1845646029 |
Containing papers presented at the twelfth in a series of successful international conferences on Advanced Computational Methods and Experiments in Heat Transfer, this book covers the latest developments in this important field. Heat Transfer plays a major role in emerging application fields such as sustainable development and the reduction of greenhouse gases, as well as micro- and nano-scale structures and bio-engineering. Typical applications include heat exchangers, gas turbine cooling, turbulent combustion and fires, electronics cooling, melting and solidification. The nature of heat transfer problems is complex, involving many different simultaneously occurring mechanisms (e.g., heat conduction, convection, turbulence, thermal radiation. phase change). Their complexity makes it imperative that we develop reliable and accurate computational methods to replace or complement expensive and time-consuming experimental trial and error work. Tremendous advances have been achieved during recent years due to improved numerical solutions of non-linear partial differential equations and more powerful computers capable of performing efficient and rapid calculations. Nevertheless, to further progress, it will also be necessary to develop theoretical and predictive computational procedures--both basic and innovative--and in applied research. Accurate experimental investigations are needed to validate the numerical calculations. The book includes such topics as: Heat Transfer in Energy Producing Devices; Heat Transfer Enhancement; Heat Transfer Problems; Natural and Forced Convection and Radiation; Multiphase Flow Heat Transfer; Modelling and Experiments.
Experimentation, Validation, and Uncertainty Analysis for Engineers
Title | Experimentation, Validation, and Uncertainty Analysis for Engineers PDF eBook |
Author | Hugh W. Coleman |
Publisher | John Wiley & Sons |
Pages | 404 |
Release | 2018-04-09 |
Genre | Technology & Engineering |
ISBN | 1119417708 |
Helps engineers and scientists assess and manage uncertainty at all stages of experimentation and validation of simulations Fully updated from its previous edition, Experimentation, Validation, and Uncertainty Analysis for Engineers, Fourth Edition includes expanded coverage and new examples of applying the Monte Carlo Method (MCM) in performing uncertainty analyses. Presenting the current, internationally accepted methodology from ISO, ANSI, and ASME standards for propagating uncertainties using both the MCM and the Taylor Series Method (TSM), it provides a logical approach to experimentation and validation through the application of uncertainty analysis in the planning, design, construction, debugging, execution, data analysis, and reporting phases of experimental and validation programs. It also illustrates how to use a spreadsheet approach to apply the MCM and the TSM, based on the authors’ experience in applying uncertainty analysis in complex, large-scale testing of real engineering systems. Experimentation, Validation, and Uncertainty Analysis for Engineers, Fourth Edition includes examples throughout, contains end of chapter problems, and is accompanied by the authors’ website www.uncertainty-analysis.com. Guides readers through all aspects of experimentation, validation, and uncertainty analysis Emphasizes the use of the Monte Carlo Method in performing uncertainty analysis Includes complete new examples throughout Features workable problems at the end of chapters Experimentation, Validation, and Uncertainty Analysis for Engineers, Fourth Edition is an ideal text and guide for researchers, engineers, and graduate and senior undergraduate students in engineering and science disciplines. Knowledge of the material in this Fourth Edition is a must for those involved in executing or managing experimental programs or validating models and simulations.
Gas Turbine Blade Cooling
Title | Gas Turbine Blade Cooling PDF eBook |
Author | Chaitanya D Ghodke |
Publisher | SAE International |
Pages | 238 |
Release | 2018-12-10 |
Genre | Technology & Engineering |
ISBN | 0768095026 |
Gas turbines play an extremely important role in fulfilling a variety of power needs and are mainly used for power generation and propulsion applications. The performance and efficiency of gas turbine engines are to a large extent dependent on turbine rotor inlet temperatures: typically, the hotter the better. In gas turbines, the combustion temperature and the fuel efficiency are limited by the heat transfer properties of the turbine blades. However, in pushing the limits of hot gas temperatures while preventing the melting of blade components in high-pressure turbines, the use of effective cooling technologies is critical. Increasing the turbine inlet temperature also increases heat transferred to the turbine blade, and it is possible that the operating temperature could reach far above permissible metal temperature. In such cases, insufficient cooling of turbine blades results in excessive thermal stress on the blades causing premature blade failure. This may bring hazards to the engine's safe operation. Gas Turbine Blade Cooling, edited by Dr. Chaitanya D. Ghodke, offers 10 handpicked SAE International's technical papers, which identify key aspects of turbine blade cooling and help readers understand how this process can improve the performance of turbine hardware.