Exercises in (Mathematical) Style
Title | Exercises in (Mathematical) Style PDF eBook |
Author | John McCleary |
Publisher | The Mathematical Association of America |
Pages | 289 |
Release | 2017-05-17 |
Genre | Mathematics |
ISBN | 0883856522 |
Hover over the image to zoom. Click the image for a popup.Email a Friend About This ItemLogin to Submit a Review inShare John McCleary In Exercises in (Mathematical) Style, the author investigates the world of that familiar set of numbers, the binomial coefficients. While the reader learns some of the properties, relations, and generalizations of the numbers of Pascal's triangle, each story explores a different mode of discourse - from arguing algebraically, combinatorially, geometrically, or by induction, contradiction, or recursion to discovering mathematical facts in poems, music, letters, and various styles of stories. The author follows the example of Raymond Queneau's Exercises in Style, giving the reader 99 stories in various styles. The ubiquitous nature of binomial coefficients leads the tour through combinatorics, number theory, algebra, analysis, and even topology. The book celebrates the joy of writing and the joy of mathematics, found by engaging the rich properties of this simple set of numbers.
Exercises in (Mathematical) Style
Title | Exercises in (Mathematical) Style PDF eBook |
Author | John McCleary |
Publisher | American Mathematical Soc. |
Pages | 275 |
Release | 2017 |
Genre | Education |
ISBN | 1470447835 |
What does style mean in mathematics? Style is both how one does something and how one communicates what was done. In this book, the author investigates the worlds of the well-known numbers, the binomial coefficients. The author follows the example of Raymond Queneau's Exercises in Style. Offering the reader 99 stories in various styles. The book celebrates the joy of mathematics and the joy of writing mathematics by exploring the rich properties of this familiar collection of numbers. For any one interested in mathematics, from high school students on up.
Modern Classical Homotopy Theory
Title | Modern Classical Homotopy Theory PDF eBook |
Author | Jeffrey Strom |
Publisher | American Mathematical Soc. |
Pages | 862 |
Release | 2011-10-19 |
Genre | Mathematics |
ISBN | 0821852868 |
The core of classical homotopy theory is a body of ideas and theorems that emerged in the 1950s and was later largely codified in the notion of a model category. This core includes the notions of fibration and cofibration; CW complexes; long fiber and cofiber sequences; loop spaces and suspensions; and so on. Brown's representability theorems show that homology and cohomology are also contained in classical homotopy theory. This text develops classical homotopy theory from a modern point of view, meaning that the exposition is informed by the theory of model categories and that homotopy limits and colimits play central roles. The exposition is guided by the principle that it is generally preferable to prove topological results using topology (rather than algebra). The language and basic theory of homotopy limits and colimits make it possible to penetrate deep into the subject with just the rudiments of algebra. The text does reach advanced territory, including the Steenrod algebra, Bott periodicity, localization, the Exponent Theorem of Cohen, Moore, and Neisendorfer, and Miller's Theorem on the Sullivan Conjecture. Thus the reader is given the tools needed to understand and participate in research at (part of) the current frontier of homotopy theory. Proofs are not provided outright. Rather, they are presented in the form of directed problem sets. To the expert, these read as terse proofs; to novices they are challenges that draw them in and help them to thoroughly understand the arguments.
An Illustrated Theory of Numbers
Title | An Illustrated Theory of Numbers PDF eBook |
Author | Martin H. Weissman |
Publisher | American Mathematical Soc. |
Pages | 341 |
Release | 2020-09-15 |
Genre | Education |
ISBN | 1470463717 |
News about this title: — Author Marty Weissman has been awarded a Guggenheim Fellowship for 2020. (Learn more here.) — Selected as a 2018 CHOICE Outstanding Academic Title — 2018 PROSE Awards Honorable Mention An Illustrated Theory of Numbers gives a comprehensive introduction to number theory, with complete proofs, worked examples, and exercises. Its exposition reflects the most recent scholarship in mathematics and its history. Almost 500 sharp illustrations accompany elegant proofs, from prime decomposition through quadratic reciprocity. Geometric and dynamical arguments provide new insights, and allow for a rigorous approach with less algebraic manipulation. The final chapters contain an extended treatment of binary quadratic forms, using Conway's topograph to solve quadratic Diophantine equations (e.g., Pell's equation) and to study reduction and the finiteness of class numbers. Data visualizations introduce the reader to open questions and cutting-edge results in analytic number theory such as the Riemann hypothesis, boundedness of prime gaps, and the class number 1 problem. Accompanying each chapter, historical notes curate primary sources and secondary scholarship to trace the development of number theory within and outside the Western tradition. Requiring only high school algebra and geometry, this text is recommended for a first course in elementary number theory. It is also suitable for mathematicians seeking a fresh perspective on an ancient subject.
99 Variations on a Proof
Title | 99 Variations on a Proof PDF eBook |
Author | Philip Ording |
Publisher | Princeton University Press |
Pages | 272 |
Release | 2021-10-19 |
Genre | Mathematics |
ISBN | 0691218978 |
An exploration of mathematical style through 99 different proofs of the same theorem This book offers a multifaceted perspective on mathematics by demonstrating 99 different proofs of the same theorem. Each chapter solves an otherwise unremarkable equation in distinct historical, formal, and imaginative styles that range from Medieval, Topological, and Doggerel to Chromatic, Electrostatic, and Psychedelic. With a rare blend of humor and scholarly aplomb, Philip Ording weaves these variations into an accessible and wide-ranging narrative on the nature and practice of mathematics. Inspired by the experiments of the Paris-based writing group known as the Oulipo—whose members included Raymond Queneau, Italo Calvino, and Marcel Duchamp—Ording explores new ways to examine the aesthetic possibilities of mathematical activity. 99 Variations on a Proof is a mathematical take on Queneau’s Exercises in Style, a collection of 99 retellings of the same story, and it draws unexpected connections to everything from mysticism and technology to architecture and sign language. Through diagrams, found material, and other imagery, Ording illustrates the flexibility and creative potential of mathematics despite its reputation for precision and rigor. Readers will gain not only a bird’s-eye view of the discipline and its major branches but also new insights into its historical, philosophical, and cultural nuances. Readers, no matter their level of expertise, will discover in these proofs and accompanying commentary surprising new aspects of the mathematical landscape.
Exercises in Style
Title | Exercises in Style PDF eBook |
Author | Raymond Queneau |
Publisher | New Directions Publishing |
Pages | 212 |
Release | 1981 |
Genre | French fiction |
ISBN | 9780811207898 |
Queneau uses a variety of literary styles and forms in ninety-nine exercises which retell the same story about a minor brawl aboard a bus.
Algebra: Chapter 0
Title | Algebra: Chapter 0 PDF eBook |
Author | Paolo Aluffi |
Publisher | American Mathematical Soc. |
Pages | 713 |
Release | 2021-11-09 |
Genre | Education |
ISBN | 147046571X |
Algebra: Chapter 0 is a self-contained introduction to the main topics of algebra, suitable for a first sequence on the subject at the beginning graduate or upper undergraduate level. The primary distinguishing feature of the book, compared to standard textbooks in algebra, is the early introduction of categories, used as a unifying theme in the presentation of the main topics. A second feature consists of an emphasis on homological algebra: basic notions on complexes are presented as soon as modules have been introduced, and an extensive last chapter on homological algebra can form the basis for a follow-up introductory course on the subject. Approximately 1,000 exercises both provide adequate practice to consolidate the understanding of the main body of the text and offer the opportunity to explore many other topics, including applications to number theory and algebraic geometry. This will allow instructors to adapt the textbook to their specific choice of topics and provide the independent reader with a richer exposure to algebra. Many exercises include substantial hints, and navigation of the topics is facilitated by an extensive index and by hundreds of cross-references.