Evolution Equations, Feshbach Resonances, Singular Hodge Theory

Evolution Equations, Feshbach Resonances, Singular Hodge Theory
Title Evolution Equations, Feshbach Resonances, Singular Hodge Theory PDF eBook
Author Michael Demuth
Publisher Wiley-VCH
Pages 436
Release 1999-04-22
Genre Computers
ISBN

Download Evolution Equations, Feshbach Resonances, Singular Hodge Theory Book in PDF, Epub and Kindle

Evolution equations describe many processes in science and engineering, and they form a central topic in mathematics. The first three contributions to this volume address parabolic evolutionary problems: The opening paper treats asymptotic solutions to singular parabolic problems with distribution and hyperfunction data. The theory of the asymptotic Laplace transform is developed in the second paper and is applied to semigroups generated by operators with large growth of the resolvent. An article follows on solutions by local operator methods of time-dependent singular problems in non-cylindrical domains. The next contribution addresses spectral properties of systems of pseudodifferential operators when the characteristic variety has a conical intersection. Bohr-Sommerfeld quantization rules and first order exponential asymptotics of the resonance widths are established under various semiclassical regimes. In the following article, the limiting absorption principle is proven for certain self-adjoint operators. Applications include Hamiltonians with magnetic fields, Dirac Hamiltonians, and the propagation of waves in inhomogeneous media. The final topic develops Hodge theory on manifolds with edges; its authors introduce a concept of elliptic complexes, prove a Hodge decomposition theorem, and study the asymptotics of harmonic forms.

Functional Analysis and Evolution Equations

Functional Analysis and Evolution Equations
Title Functional Analysis and Evolution Equations PDF eBook
Author Herbert Amann
Publisher Springer Science & Business Media
Pages 643
Release 2008-02-28
Genre Mathematics
ISBN 3764377941

Download Functional Analysis and Evolution Equations Book in PDF, Epub and Kindle

Gunter Lumer was an outstanding mathematician whose works have great influence on the research community in mathematical analysis and evolution equations. He was at the origin of the breath-taking development the theory of semigroups saw after the pioneering book of Hille and Phillips from 1957. This volume contains invited contributions presenting the state of the art of these topics and reflecting the broad interests of Gunter Lumer.

Evolution Equations, Semigroups and Functional Analysis

Evolution Equations, Semigroups and Functional Analysis
Title Evolution Equations, Semigroups and Functional Analysis PDF eBook
Author Brunello Terreni
Publisher Springer Science & Business Media
Pages 426
Release 2002
Genre Mathematics
ISBN 9783764367916

Download Evolution Equations, Semigroups and Functional Analysis Book in PDF, Epub and Kindle

Brunello Terreni (1953-2000) was a researcher and teacher with vision and dedication. The present volume is dedicated to the memory of Brunello Terreni. His mathematical interests are reflected in 20 expository articles written by distinguished mathematicians. The unifying theme of the articles is "evolution equations and functional analysis", which is presented in various and diverse forms: parabolic equations, semigroups, stochastic evolution, optimal control, existence, uniqueness and regularity of solutions, inverse problems as well as applications. Contributors: P. Acquistapace, V. Barbu, A. Briani, L. Boccardo, P. Colli Franzone, G. Da Prato, D. Donatelli, A. Favini, M. Fuhrmann, M. Grasselli, R. Illner, H. Koch, R. Labbas, H. Lange, I. Lasiecka, A. Lorenzi, A. Lunardi, P. Marcati, R. Nagel, G. Nickel, V. Pata, M. M. Porzio, B. Ruf, G. Savaré, R. Schnaubelt, E. Sinestrari, H. Tanabe, H. Teismann, E. Terraneo, R. Triggiani, A. Yagi

Evolution Equations, Semigroups and Functional Analysis

Evolution Equations, Semigroups and Functional Analysis
Title Evolution Equations, Semigroups and Functional Analysis PDF eBook
Author Alfredo Lorenzi
Publisher Birkhäuser
Pages 404
Release 2012-12-06
Genre Mathematics
ISBN 3034882211

Download Evolution Equations, Semigroups and Functional Analysis Book in PDF, Epub and Kindle

Brunello Terreni (1953-2000) was a researcher and teacher with vision and dedication. The present volume is dedicated to the memory of Brunello Terreni. His mathematical interests are reflected in 20 expository articles written by distinguished mathematicians. The unifying theme of the articles is "evolution equations and functional analysis", which is presented in various and diverse forms: parabolic equations, semigroups, stochastic evolution, optimal control, existence, uniqueness and regularity of solutions, inverse problems as well as applications. Contributors: P. Acquistapace, V. Barbu, A. Briani, L. Boccardo, P. Colli Franzone, G. Da Prato, D. Donatelli, A. Favini, M. Fuhrmann, M. Grasselli, R. Illner, H. Koch, R. Labbas, H. Lange, I. Lasiecka, A. Lorenzi, A. Lunardi, P. Marcati, R. Nagel, G. Nickel, V. Pata, M. M. Porzio, B. Ruf, G. Savaré, R. Schnaubelt, E. Sinestrari, H. Tanabe, H. Teismann, E. Terraneo, R. Triggiani, A. Yagi.

One-Parameter Semigroups for Linear Evolution Equations

One-Parameter Semigroups for Linear Evolution Equations
Title One-Parameter Semigroups for Linear Evolution Equations PDF eBook
Author Klaus-Jochen Engel
Publisher Springer Science & Business Media
Pages 609
Release 2006-04-06
Genre Mathematics
ISBN 0387226427

Download One-Parameter Semigroups for Linear Evolution Equations Book in PDF, Epub and Kindle

This book explores the theory of strongly continuous one-parameter semigroups of linear operators. A special feature of the text is an unusually wide range of applications such as to ordinary and partial differential operators, to delay and Volterra equations, and to control theory. Also, the book places an emphasis on philosophical motivation and the historical background.

Crack Theory and Edge Singularities

Crack Theory and Edge Singularities
Title Crack Theory and Edge Singularities PDF eBook
Author D. V. Kapanadze
Publisher Springer Science & Business Media
Pages 512
Release 2013-03-14
Genre Mathematics
ISBN 940170323X

Download Crack Theory and Edge Singularities Book in PDF, Epub and Kindle

Boundary value problems for partial differential equations playa crucial role in many areas of physics and the applied sciences. Interesting phenomena are often connected with geometric singularities, for instance, in mechanics. Elliptic operators in corresponding models are then sin gular or degenerate in a typical way. The necessary structures for constructing solutions belong to a particularly beautiful and ambitious part of the analysis. Cracks in a medium are described by hypersurfaces with a boundary. Config urations of that kind belong to the category of spaces (manifolds) with geometric singularities, here with edges. In recent years the analysis on such (in general, stratified) spaces has become a mathematical structure theory with many deep relations with geometry, topology, and mathematical physics. Key words in this connection are operator algebras, index theory, quantisation, and asymptotic analysis. Motivated by Lame's system with two-sided boundary conditions on a crack we ask the structure of solutions in weighted edge Sobolov spaces and subspaces with discrete and continuous asymptotics. Answers are given for elliptic sys tems in general. We construct parametrices of corresponding edge boundary value problems and obtain elliptic regularity in the respective scales of weighted spaces. The original elliptic operators as well as their parametrices belong to a block matrix algebra of pseudo-differential edge problems with boundary and edge conditions, satisfying analogues of the Shapiro-Lopatinskij condition from standard boundary value problems. Operators are controlled by a hierarchy of principal symbols with interior, boundary, and edge components.

Handbook of Differential Equations: Evolutionary Equations

Handbook of Differential Equations: Evolutionary Equations
Title Handbook of Differential Equations: Evolutionary Equations PDF eBook
Author C.M. Dafermos
Publisher Elsevier
Pages 579
Release 2004-08-24
Genre Mathematics
ISBN 0080521827

Download Handbook of Differential Equations: Evolutionary Equations Book in PDF, Epub and Kindle

This book contains several introductory texts concerning the main directions in the theory of evolutionary partial differential equations. The main objective is to present clear, rigorous,and in depth surveys on the most important aspects of the present theory. The table of contents includes: W.Arendt: Semigroups and evolution equations: Calculus, regularity and kernel estimatesA.Bressan: The front tracking method for systems of conservation lawsE.DiBenedetto, J.M.Urbano,V.Vespri: Current issues on singular and degenerate evolution equations;L.Hsiao, S.Jiang: Nonlinear hyperbolic-parabolic coupled systemsA.Lunardi: Nonlinear parabolic equations and systemsD.Serre:L1-stability of nonlinear waves in scalar conservation laws B.Perthame:Kinetic formulations of parabolic and hyperbolic PDE's: from theory to numerics