Geomechanical Studies of the Barnett Shale, Texas, USA
Title | Geomechanical Studies of the Barnett Shale, Texas, USA PDF eBook |
Author | John Peter Vermylen |
Publisher | Stanford University |
Pages | 143 |
Release | 2011 |
Genre | |
ISBN |
This thesis presents five studies of a gas shale reservoir using diverse methodologies to investigate geomechanical and transport properties that are important across the full reservoir lifecycle. Using the Barnett shale as a case study, we investigated adsorption, permeability, geomechanics, microseismicity, and stress evolution in two different study areas. The main goals of this thesis can be divided into two parts: first, to investigate how flow properties evolve with changes in stress and gas species, and second, to understand how the interactions between stress, fractures, and microseismicity control the creation of a permeable reservoir volume during hydraulic fracturing. In Chapter 2, we present results from adsorption and permeability experiments conducted on Barnett shale rock samples. We found Langmuir-type adsorption of CH4 and N2 at magnitudes consistent with previous studies of the Barnett shale. Three of our samples demonstrated BET-type adsorption of CO2, in contrast to all previous studies on CO2 adsorption in gas shales, which found Langmuir-adsorption. At low pressures (600 psi), we found preferential adsorption of CO2 over CH4 ranging from 3.6x to 5.5x. While our measurements were conducted at low pressures (up to 1500 psi), when our model fits are extrapolated to reservoir pressures they reach similar adsorption magnitudes as have been found in previous studies. At these high reservoir pressures, the very large preferential adsorption of CO2 over CH4 (up to 5-10x) suggests a significant potential for CO2 storage in gas shales like the Barnett if practical problems of injectivity and matrix transport can be overcome. We successfully measured permeability versus effective stress on two intact Barnett shale samples. We measured permeability effective stress coefficients less than 1 on both samples, invalidating our hypothesis that there might be throughgoing flow paths within the soft, porous organic kerogen that would lead the permeability effective stress coefficient to be greater than 1. The results suggest that microcracks are likely the dominant flow paths at these scales. In Chapter 3, we present integrated geological, geophysical, and geomechanical data in order to characterize the rock properties in our Barnett shale study area and to model the stress state in the reservoir before hydraulic fracturing occurred. Five parallel, horizontal wells were drilled in the study area and then fractured using three different techniques. We used the well logs from a vertical pilot well and a horizontal well to constrain the stress state in the reservoir. While there was some variation along the length of the well, we were able to determine a best fit stress state of Pp = 0.48 psi/ft, Sv = 1.1 psi/ft, SHmax = 0.73 psi/ft, and Shmin = 0.68 psi/ft. Applying this stress state to the mapped natural fractures indicates that there is significant potential for induced shear slip on natural fracture planes in this region of the Barnett, particularly close to the main hydraulic fracture where the pore pressure increase during hydraulic fracturing is likely to be very high. In Chapter 4, we present new techniques to quantify the robustness of hydraulic fracturing in gas shale reservoirs. The case study we analyzed involves five parallel horizontal wells in the Barnett shale with 51 frac stages. To investigate the numbers, sizes, and types of microearthquakes initiated during each frac stage, we created Gutenberg-Richter-type magnitude distribution plots to see if the size of events follows the characteristic scaling relationship found in natural earthquakes. We found that slickwater fracturing does generate a log-linear distribution of microearthquakes, but that it creates proportionally more small events than natural earthquake sources. Finding considerable variability in the generation of microearthquakes, we used the magnitude analysis as a proxy for the "robustness" of the stimulation of a given stage. We found that the conventionally fractured well and the two alternately fractured wells ("zipperfracs") were more effective than the simultaneously fractured wells ("simulfracs") in generating microearthquakes. We also found that the later stages of fracturing a given well were more successful in generating microearthquakes than the early stages. In Chapter 5, we present estimates of stress evolution in our study reservoir through analysis of the instantaneous shut-in pressure (ISIP) at the end of each stage. The ISIP increased stage by stage for all wells, but the simulfrac wells showed the greatest increase and the zipperfrac wells the least. We modeled the stress increase in the reservoir with a simple sequence of 2-D cracks along the length of the well. When using a spacing of one crack per stage, the modeled stress increase was nearly identical to the measured stress increase in the zipperfrac wells. When using three cracks per stage, the modeled final stage stress magnitude matched the measured final stage stress magnitude from the simulfrac wells, but the rate of stress increase in the simulfrac wells was much more gradual than the model predicted. To further investigate the causes of these ISIP trends, we began numerical flow and stress analysis to more realistically model the processes in the reservoir. One of our hypotheses was that the shorter total time needed to complete all the stages of the simulfrac wells was the cause of the greater ISIP increase compared to the zipperfrac wells. The microseismic activity level measured in Chapter 4 also correlates with total length of injection, suggesting leak off into the reservoir encouraged shear failure. Numerical modeling using the coupled FEM and flow software GEOSIM was able to model some cumulative stress increase the reservoir, but the full trend was not replicated. Further work to model field observations of hydraulic fracturing will enhance our understanding of the impact that hydraulic fracturing and stress change have on fracture creation and permeability enhancement in gas shales.
Unconventional Reservoir Geomechanics
Title | Unconventional Reservoir Geomechanics PDF eBook |
Author | Mark D. Zoback |
Publisher | Cambridge University Press |
Pages | 495 |
Release | 2019-05-16 |
Genre | Business & Economics |
ISBN | 1107087074 |
A comprehensive overview of the key geologic, geomechanical and engineering principles that govern the development of unconventional oil and gas reservoirs. Covering hydrocarbon-bearing formations, horizontal drilling, reservoir seismology and environmental impacts, this is an invaluable resource for geologists, geophysicists and reservoir engineers.
Pressure Transient Testing
Title | Pressure Transient Testing PDF eBook |
Author | John Lee |
Publisher | |
Pages | 378 |
Release | 2003 |
Genre | Business & Economics |
ISBN |
Pressure Transient Testing presents the fundamentals of pressure-transient test analysis and design in clear, simple language and explains the theoretical bases of commercial well-test-analysis software. Test-analysis techniques are illustrated with complete and clearly written examples. Additional exercises for classroom or individual practice are provided. With its focus on physical processes and mathematical interpretation, this book appeals to all levels of engineers who want to understand how modern approaches work. Pressure transient test analysis is a mature technology in petroleum engineering; even so, it continues to evolve. Because of the developments in this technology since the last SPE textbook devoted to transient testing was published, we concluded that students could benefit from a textbook approach to the subject that includes a representative sampling of the more important fundamentals and applications. We deliberately distinguish between a textbook approach, which stresses understanding through numerous examples and exercises dealing with selected fundamentals and applications, and a monograph approach, which attempts to summarize the state-of-the-art in the technology. Computational methods that transient test analysts use have gone through a revolution since most existing texts on the subject were written. Most calculations are now done with commercial software or by spreadsheets or proprietary software developed by users to meet personal needs and objectives. These advances in software have greatly increased productivity in this technology, but they also have contributed to a "black box" approach to test analysis. In this text, we attempt to explain what's in the box, and we do not include a number of the modern tools that enhance individual engineer productivity. We hope, instead, to provide understanding so that the student can use the commercial software with greater appreciation and so that the student can read monographs and papers on transient testing with greater appreciation for the context of the subject. Accordingly, this text is but an introduction to the vast field of pressure transient test analysis.
Fault Mechanics and Transport Properties of Rocks
Title | Fault Mechanics and Transport Properties of Rocks PDF eBook |
Author | Brian Evans |
Publisher | Academic Press |
Pages | 549 |
Release | 1992-08-04 |
Genre | Business & Economics |
ISBN | 008095989X |
This festschrift, compiled from the symposium held in honor of W.F. Brace, is a timely overview of fault mechanics and transport properties of rock. State-of-the-art research is presented by internationally recognized experts, who highlight developments in this contemporary area of study subsequent to Bill Brace's pioneering work.Key Features* The strength of brittle rocks* The effects of stress and stress-induced damage on physical properties of rock* Permeability and fluid flow in rocks* The strength of rocks and tectonic processes
1985 International Symposium on Geothermal Energy
Title | 1985 International Symposium on Geothermal Energy PDF eBook |
Author | |
Publisher | |
Pages | 636 |
Release | 1985 |
Genre | Technology & Engineering |
ISBN |
Petroleum Production Systems
Title | Petroleum Production Systems PDF eBook |
Author | Michael J. Economides |
Publisher | Pearson Education |
Pages | 752 |
Release | 2013 |
Genre | Technology & Engineering |
ISBN | 0137031580 |
Written by four leading experts, this edition thoroughly introduces today's modern principles of petroleum production systems development and operation, considering the combined behaviour of reservoirs, surface equipment, pipeline systems, and storage facilities. The authors address key issues including artificial lift, well diagnosis, matrix stimulation, hydraulic fracturing and sand control. They show how to optimise systems for diverse production schedules using queuing theory, as well as linear and dynamic programming. Throughout, they provide both best practices and rationales, fully illuminating the exploitation of unconventional oil and gas reservoirs. Updates include: Extensive new coverage of hydraulic fracturing, including high permeability fracturing New sand and water management techniques * An all-new chapter on Production Analysis New coverage of digital reservoirs and self-learning techniques New skin correlations and HW flow techniques
Advanced Reservoir Engineering
Title | Advanced Reservoir Engineering PDF eBook |
Author | Tarek Ahmed |
Publisher | Elsevier |
Pages | 421 |
Release | 2011-03-15 |
Genre | Technology & Engineering |
ISBN | 0080498833 |
Advanced Reservoir Engineering offers the practicing engineer and engineering student a full description, with worked examples, of all of the kinds of reservoir engineering topics that the engineer will use in day-to-day activities. In an industry where there is often a lack of information, this timely volume gives a comprehensive account of the physics of reservoir engineering, a thorough knowledge of which is essential in the petroleum industry for the efficient recovery of hydrocarbons.Chapter one deals exclusively with the theory and practice of transient flow analysis and offers a brief but thorough hands-on guide to gas and oil well testing. Chapter two documents water influx models and their practical applications in conducting comprehensive field studies, widely used throughout the industry. Later chapters include unconventional gas reservoirs and the classical adaptations of the material balance equation.* An essential tool for the petroleum and reservoir engineer, offering information not available anywhere else* Introduces the reader to cutting-edge new developments in Type-Curve Analysis, unconventional gas reservoirs, and gas hydrates * Written by two of the industry's best-known and respected reservoir engineers