Essential Mathematics for Engineers and Scientists
Title | Essential Mathematics for Engineers and Scientists PDF eBook |
Author | Thomas J. Pence |
Publisher | Cambridge University Press |
Pages | 757 |
Release | 2020-05-21 |
Genre | Mathematics |
ISBN | 1108425445 |
Clear and engaging introduction for graduate students in engineering and the physical sciences to essential topics of applied mathematics.
Applied Mathematics for Science and Engineering
Title | Applied Mathematics for Science and Engineering PDF eBook |
Author | Larry A. Glasgow |
Publisher | John Wiley & Sons |
Pages | 256 |
Release | 2014-07-24 |
Genre | Technology & Engineering |
ISBN | 1118749839 |
Prepare students for success in using applied mathematics for engineering practice and post-graduate studies Moves from one mathematical method to the next sustaining reader interest and easing the application of the techniques Uses different examples from chemical, civil, mechanical and various other engineering fields Based on a decade’s worth of the authors lecture notes detailing the topic of applied mathematics for scientists and engineers Concisely writing with numerous examples provided including historical perspectives as well as a solutions manual for academic adopters
Handbook of Mathematics for Engineers and Scientists
Title | Handbook of Mathematics for Engineers and Scientists PDF eBook |
Author | Andrei D. Polyanin |
Publisher | CRC Press |
Pages | 1542 |
Release | 2006-11-27 |
Genre | Mathematics |
ISBN | 1420010514 |
Covering the main fields of mathematics, this handbook focuses on the methods used for obtaining solutions of various classes of mathematical equations that underlie the mathematical modeling of numerous phenomena and processes in science and technology. The authors describe formulas, methods, equations, and solutions that are frequently used in scientific and engineering applications and present classical as well as newer solution methods for various mathematical equations. The book supplies numerous examples, graphs, figures, and diagrams and contains many results in tabular form, including finite sums and series and exact solutions of differential, integral, and functional equations.
Mathematical Physics
Title | Mathematical Physics PDF eBook |
Author | Bruce R. Kusse |
Publisher | John Wiley & Sons |
Pages | 689 |
Release | 2010-01-05 |
Genre | Science |
ISBN | 3527618147 |
What sets this volume apart from other mathematics texts is its emphasis on mathematical tools commonly used by scientists and engineers to solve real-world problems. Using a unique approach, it covers intermediate and advanced material in a manner appropriate for undergraduate students. Based on author Bruce Kusse's course at the Department of Applied and Engineering Physics at Cornell University, Mathematical Physics begins with essentials such as vector and tensor algebra, curvilinear coordinate systems, complex variables, Fourier series, Fourier and Laplace transforms, differential and integral equations, and solutions to Laplace's equations. The book moves on to explain complex topics that often fall through the cracks in undergraduate programs, including the Dirac delta-function, multivalued complex functions using branch cuts, branch points and Riemann sheets, contravariant and covariant tensors, and an introduction to group theory. This expanded second edition contains a new appendix on the calculus of variation -- a valuable addition to the already superb collection of topics on offer. This is an ideal text for upper-level undergraduates in physics, applied physics, physical chemistry, biophysics, and all areas of engineering. It allows physics professors to prepare students for a wide range of employment in science and engineering and makes an excellent reference for scientists and engineers in industry. Worked out examples appear throughout the book and exercises follow every chapter. Solutions to the odd-numbered exercises are available for lecturers at www.wiley-vch.de/textbooks/.
Essentials of Mathematical Methods in Science and Engineering
Title | Essentials of Mathematical Methods in Science and Engineering PDF eBook |
Author | Selcuk S. Bayin |
Publisher | John Wiley & Sons |
Pages | 577 |
Release | 2013-06-05 |
Genre | Mathematics |
ISBN | 1118626168 |
A complete introduction to the multidisciplinary applications of mathematical methods In order to work with varying levels of engineering and physics research, it is important to have a firm understanding of key mathematical concepts such as advanced calculus, differential equations, complex analysis, and introductory mathematical physics. Essentials of Mathematical Methods in Science and Engineering provides a comprehensive introduction to these methods under one cover, outlining basic mathematical skills while also encouraging students and practitioners to develop new, interdisciplinary approaches to their research. The book begins with core topics from various branches of mathematics such as limits, integrals, and inverse functions. Subsequent chapters delve into the analytical tools that are commonly used in scientific and engineering studies, including vector analysis, generalized coordinates, determinants and matrices, linear algebra, complex numbers, complex analysis, and Fourier series. The author provides an extensive chapter on probability theory with applications to statistical mechanics and thermodynamics that complements the following chapter on information theory, which contains coverage of Shannon's theory, decision theory, game theory, and quantum information theory. A comprehensive list of references facilitates further exploration of these topics. Throughout the book, numerous examples and exercises reinforce the presented concepts and techniques. In addition, the book is in a modular format, so each chapter covers its subject thoroughly and can be read independently. This structure affords flexibility for individualizing courses and teaching. Providing a solid foundation and overview of the various mathematical methods and applications in multidisciplinary research, Essentials of Mathematical Methods in Science and Engineering is an excellent text for courses in physics, science, mathematics, and engineering at the upper-undergraduate and graduate levels. It also serves as a useful reference for scientists and engineers who would like a practical review of mathematical methods.
Advanced Mathematical Methods for Scientists and Engineers I
Title | Advanced Mathematical Methods for Scientists and Engineers I PDF eBook |
Author | Carl M. Bender |
Publisher | Springer Science & Business Media |
Pages | 605 |
Release | 2013-03-09 |
Genre | Mathematics |
ISBN | 1475730691 |
A clear, practical and self-contained presentation of the methods of asymptotics and perturbation theory for obtaining approximate analytical solutions to differential and difference equations. Aimed at teaching the most useful insights in approaching new problems, the text avoids special methods and tricks that only work for particular problems. Intended for graduates and advanced undergraduates, it assumes only a limited familiarity with differential equations and complex variables. The presentation begins with a review of differential and difference equations, then develops local asymptotic methods for such equations, and explains perturbation and summation theory before concluding with an exposition of global asymptotic methods. Emphasizing applications, the discussion stresses care rather than rigor and relies on many well-chosen examples to teach readers how an applied mathematician tackles problems. There are 190 computer-generated plots and tables comparing approximate and exact solutions, over 600 problems of varying levels of difficulty, and an appendix summarizing the properties of special functions.
Advanced Mathematics for Engineers and Scientists
Title | Advanced Mathematics for Engineers and Scientists PDF eBook |
Author | Paul DuChateau |
Publisher | Courier Corporation |
Pages | 401 |
Release | 2013-01-17 |
Genre | Mathematics |
ISBN | 0486141594 |
This book can be used as either a primary text or a supplemental reference for courses in applied mathematics. Its core chapters are devoted to linear algebra, calculus, and ordinary differential equations. Additional topics include partial differential equations and approximation methods. Each chapter features an ample selection of solved problems. These problems were chosen to illustrate not only how to solve various algebraic and differential equations but also how to interpret the solutions in order to gain insight into the behavior of the system modeled by the equation. In addition to the worked-out problems, numerous examples and exercises appear throughout the text.