Entropy Methods for Diffusive Partial Differential Equations

Entropy Methods for Diffusive Partial Differential Equations
Title Entropy Methods for Diffusive Partial Differential Equations PDF eBook
Author Ansgar Jüngel
Publisher Springer
Pages 146
Release 2016-06-17
Genre Mathematics
ISBN 3319342193

Download Entropy Methods for Diffusive Partial Differential Equations Book in PDF, Epub and Kindle

This book presents a range of entropy methods for diffusive PDEs devised by many researchers in the course of the past few decades, which allow us to understand the qualitative behavior of solutions to diffusive equations (and Markov diffusion processes). Applications include the large-time asymptotics of solutions, the derivation of convex Sobolev inequalities, the existence and uniqueness of weak solutions, and the analysis of discrete and geometric structures of the PDEs. The purpose of the book is to provide readers an introduction to selected entropy methods that can be found in the research literature. In order to highlight the core concepts, the results are not stated in the widest generality and most of the arguments are only formal (in the sense that the functional setting is not specified or sufficient regularity is supposed). The text is also suitable for advanced master and PhD students and could serve as a textbook for special courses and seminars.

Partial Differential Equations in Action

Partial Differential Equations in Action
Title Partial Differential Equations in Action PDF eBook
Author Sandro Salsa
Publisher Springer
Pages 714
Release 2015-04-24
Genre Mathematics
ISBN 3319150936

Download Partial Differential Equations in Action Book in PDF, Epub and Kindle

The book is intended as an advanced undergraduate or first-year graduate course for students from various disciplines, including applied mathematics, physics and engineering. It has evolved from courses offered on partial differential equations (PDEs) over the last several years at the Politecnico di Milano. These courses had a twofold purpose: on the one hand, to teach students to appreciate the interplay between theory and modeling in problems arising in the applied sciences, and on the other to provide them with a solid theoretical background in numerical methods, such as finite elements. Accordingly, this textbook is divided into two parts. The first part, chapters 2 to 5, is more elementary in nature and focuses on developing and studying basic problems from the macro-areas of diffusion, propagation and transport, waves and vibrations. In turn the second part, chapters 6 to 11, concentrates on the development of Hilbert spaces methods for the variational formulation and the analysis of (mainly) linear boundary and initial-boundary value problems.

Innovative Methods for Numerical Solutions of Partial Differential Equations

Innovative Methods for Numerical Solutions of Partial Differential Equations
Title Innovative Methods for Numerical Solutions of Partial Differential Equations PDF eBook
Author P. L. Roe
Publisher World Scientific
Pages 418
Release 2002
Genre Mathematics
ISBN 9812810811

Download Innovative Methods for Numerical Solutions of Partial Differential Equations Book in PDF, Epub and Kindle

This book consists of 20 review articles dedicated to Prof. Philip Roe on the occasion of his 60th birthday and in appreciation of his original contributions to computational fluid dynamics. The articles, written by leading researchers in the field, cover many topics, including theory and applications, algorithm developments and modern computational techniques for industry. Contents: OC A One-Sided ViewOCO: The Real Story (B van Leer); Collocated Upwind Schemes for Ideal MHD (K G Powell); The Penultimate Scheme for Systems of Conservation Laws: Finite Difference ENO with Marquina's Flux Splitting (R P Fedkiw et al.); A Finite Element Based Level-Set Method for Multiphase Flows (B Engquist & A-K Tornberg); The GHOST Fluid Method for Viscous Flows (R P Fedkiw & X-D Liu); Factorizable Schemes for the Equations of Fluid Flow (D Sidilkover); Evolution Galerkin Methods as Finite Difference Schemes (K W Morton); Fluctuation Distribution Schemes on Adjustable Meshes for Scalar Hyperbolic Equations (M J Baines); Superconvergent Lift Estimates Through Adjoint Error Analysis (M B Giles & N A Pierce); Somewhere between the LaxOCoWendroff and Roe Schemes for Calculating Multidimensional Compressible Flows (A Lerat et al.); Flux Schemes for Solving Nonlinear Systems of Conservation Laws (J M Ghidaglia); A LaxOCoWendroff Type Theorem for Residual Schemes (R Abgrall et al.); Kinetic Schemes for Solving SaintOCoVenant Equations on Unstructured Grids (M O Bristeau & B Perthame); Nonlinear Projection Methods for Multi-Entropies NavierOCoStokes Systems (C Berthon & F Coquel); A Hybrid Fluctuation Splitting Scheme for Two-Dimensional Compressible Steady Flows (P De Palma et al.); Some Recent Developments in Kinetic Schemes Based on Least Squares and Entropy Variables (S M Deshpande); Difference Approximation for Scalar Conservation Law. Consistency with Entropy Condition from the Viewpoint of Oleinik's E-Condition (H Aiso); Lessons Learned from the Blast Wave Computation Using Overset Moving Grids: Grid Motion Improves the Resolution (K Fujii). Readership: Researchers and graduate students in numerical and computational mathematics in engineering."

Nonlinear Partial Differential Equations and Related Analysis

Nonlinear Partial Differential Equations and Related Analysis
Title Nonlinear Partial Differential Equations and Related Analysis PDF eBook
Author Gui-Qiang Chen
Publisher American Mathematical Soc.
Pages 336
Release 2005
Genre Mathematics
ISBN 0821835335

Download Nonlinear Partial Differential Equations and Related Analysis Book in PDF, Epub and Kindle

The Emphasis Year on Nonlinear Partial Differential Equations and Related Analysis at Northwestern University produced this fine collection of original research and survey articles. Many well-known mathematicians attended the events and submitted their contributions for this volume. Eighteen papers comprise this work, representing the most significant advances and current trends in nonlinear PDEs and their applications. Topics covered include elliptic and parabolic equations, NavierStokes equations, and hyperbolic conservation laws. Important applications are presented from incompressible and compressible fluid mechanics, combustion, and electromagnetism. Also included are articles on recent advances in statistical reliability in modeling, simulation, level set methods forimage processing, shock waves, free boundaries, boundary layers, errors in numerical solutions, stability, instability, and singular limits. The volume is suitable for researchers and graduate students interested in partial differential equations.

Spectral and High Order Methods for Partial Differential Equations ICOSAHOM 2020+1

Spectral and High Order Methods for Partial Differential Equations ICOSAHOM 2020+1
Title Spectral and High Order Methods for Partial Differential Equations ICOSAHOM 2020+1 PDF eBook
Author Jens M. Melenk
Publisher Springer Nature
Pages 571
Release 2023-06-30
Genre Mathematics
ISBN 3031204328

Download Spectral and High Order Methods for Partial Differential Equations ICOSAHOM 2020+1 Book in PDF, Epub and Kindle

The volume features high-quality papers based on the presentations at the ICOSAHOM 2020+1 on spectral and high order methods. The carefully reviewed articles cover state of the art topics in high order discretizations of partial differential equations. The volume presents a wide range of topics including the design and analysis of high order methods, the development of fast solvers on modern computer architecture, and the application of these methods in fluid and structural mechanics computations.

Statistics and Simulation

Statistics and Simulation
Title Statistics and Simulation PDF eBook
Author Jürgen Pilz
Publisher Springer
Pages 412
Release 2018-05-17
Genre Mathematics
ISBN 3319760351

Download Statistics and Simulation Book in PDF, Epub and Kindle

This volume features original contributions and invited review articles on mathematical statistics, statistical simulation and experimental design. The selected peer-reviewed contributions originate from the 8th International Workshop on Simulation held in Vienna in 2015. The book is intended for mathematical statisticians, Ph.D. students and statisticians working in medicine, engineering, pharmacy, psychology, agriculture and other related fields. The International Workshops on Simulation are devoted to statistical techniques in stochastic simulation, data collection, design of scientific experiments and studies representing broad areas of interest. The first 6 workshops took place in St. Petersburg, Russia, in 1994 – 2009 and the 7th workshop was held in Rimini, Italy, in 2013.

Splitting Methods for Partial Differential Equations with Rough Solutions

Splitting Methods for Partial Differential Equations with Rough Solutions
Title Splitting Methods for Partial Differential Equations with Rough Solutions PDF eBook
Author Helge Holden
Publisher European Mathematical Society
Pages 238
Release 2010
Genre Mathematics
ISBN 9783037190784

Download Splitting Methods for Partial Differential Equations with Rough Solutions Book in PDF, Epub and Kindle

Operator splitting (or the fractional steps method) is a very common tool to analyze nonlinear partial differential equations both numerically and analytically. By applying operator splitting to a complicated model one can often split it into simpler problems that can be analyzed separately. In this book one studies operator splitting for a family of nonlinear evolution equations, including hyperbolic conservation laws and degenerate convection-diffusion equations. Common for these equations is the prevalence of rough, or non-smooth, solutions, e.g., shocks. Rigorous analysis is presented, showing that both semi-discrete and fully discrete splitting methods converge. For conservation laws, sharp error estimates are provided and for convection-diffusion equations one discusses a priori and a posteriori correction of entropy errors introduced by the splitting. Numerical methods include finite difference and finite volume methods as well as front tracking. The theory is illustrated by numerous examples. There is a dedicated Web page that provides MATLABR codes for many of the examples. The book is suitable for graduate students and researchers in pure and applied mathematics, physics, and engineering.