Electron Density and Chemical Bonding II

Electron Density and Chemical Bonding II
Title Electron Density and Chemical Bonding II PDF eBook
Author Dietmar Stalke
Publisher Springer
Pages 300
Release 2012-06-05
Genre Science
ISBN 3642308082

Download Electron Density and Chemical Bonding II Book in PDF, Epub and Kindle

T. Koritsanszky, A. Volkov, M. Chodkiewicz: New Directions in Pseudoatom-Based X-Ray Charge Density Analysis.- B. Dittrich, D. Jayatilaka: Reliable Measurements of Dipole Moments from Single-Crystal Diffraction Data and Assessment of an In-Crystal Enhancement.- B. Engels, Th. C. Schmidt, C. Gatti, T. Schirmeister, R.F. Fink: Challenging Problems in Charge Density Determination: Polar Bonds and Influence of the Environment.- S. Fux, M. Reiher: Electron Density in Quantum Theory.- K. Meindl, J.Henn: Residual Density Analysis.- C. Gatti: The Source Function Descriptor as a Tool to Extract Chemical Information from Theoretical and Experimental Electron Densities.

Electron Density and Bonding in Crystals

Electron Density and Bonding in Crystals
Title Electron Density and Bonding in Crystals PDF eBook
Author V.G Tsirelson
Publisher CRC Press
Pages 544
Release 1996-01-01
Genre Science
ISBN 9780750302845

Download Electron Density and Bonding in Crystals Book in PDF, Epub and Kindle

Electron Density and Bonding in Crystals: Principles, Theory and X-Ray Diffraction Experiments in Solid State Physics and Chemistry provides a comprehensive, unified account of the use of diffraction techniques to determine the distribution of electrons in crystals. The book discusses theoretical and practical techniques, the application of electron density studies to chemical bonding, and the determination of the physical properties of condensed matter. The book features the authors' own key contributions to the subject as well a thorough, critical summary of the extensive literature on electron density and bonding. Logically organized, coverage ranges from the theoretical and experimental basis of electron density determination to its impact on investigations of the nature of the chemical bond and its uses in determining electromagnetic and optical properties of crystals. The main text is supplemented by appendices that provide clear, concise guidance on aspects such as systems of units, quantum theory of atomic vibrations, atomic orbitals, and creation and annihilation operators. The result is a valuable compendium of modern knowledge on electron density distributions, making this reference a standard for crystallographers, condensed matter physicists, theoretical chemists, and materials scientists.

The VSEPR Model of Molecular Geometry

The VSEPR Model of Molecular Geometry
Title The VSEPR Model of Molecular Geometry PDF eBook
Author Ronald J Gillespie
Publisher Courier Corporation
Pages 274
Release 2013-03-21
Genre Science
ISBN 0486310523

Download The VSEPR Model of Molecular Geometry Book in PDF, Epub and Kindle

Valence Shell Electron Pair Repulsion (VSEPR) theory is a simple technique for predicting the geometry of atomic centers in small molecules and molecular ions. This authoritative reference was written by Istvan Hartiggai and the developer of VSEPR theory, Ronald J. Gillespie. In addition to its value as a text for courses in molecular geometry and chemistry, it constitutes a classic reference for professionals. Starting with coverage of the broader aspects of VSEPR, this volume narrows its focus to a succinct survey of the methods of structural determination. Additional topics include the applications of the VSEPR model and its theoretical basis. Helpful data on molecular geometries, bond lengths, and bond angles appear in tables and other graphics.

Electrons and Chemical Bonding

Electrons and Chemical Bonding
Title Electrons and Chemical Bonding PDF eBook
Author
Publisher
Pages 223
Release 1965
Genre Chemical bonds
ISBN

Download Electrons and Chemical Bonding Book in PDF, Epub and Kindle

Electron Density and Chemical Bonding I

Electron Density and Chemical Bonding I
Title Electron Density and Chemical Bonding I PDF eBook
Author Dietmar Stalke
Publisher Springer
Pages 221
Release 2012-06-05
Genre Science
ISBN 3642308023

Download Electron Density and Chemical Bonding I Book in PDF, Epub and Kindle

D. Stalke, U. Flierler: More than Just Distances from Electron Density Studies.- A.O. Madsen: Modeling and Analysis of Hydrogen Atoms.- B.B. Iversen/J. Overgaard: Charge Density Methods in Hydrogen Bond Studies.- U. Flierler, D. Stalke: Some Main Group Chemical Perceptions in the Light of Experimental Charge Density Investigations.- D. Leusser: Electronic Structure and Chemical Properties of Lithium Organics Seen Through the Glasses of Charge Density.- L. J. Farrugia, P. Macchi: Bond Orders in Metal–Metal Interactions Through Electron Density Analysis.- W. Scherer, V. Herz, Ch. Hauf: On the Nature of β-Agostic Interactions: A Comparison Between the Molecular Orbital and Charge Density Picture.

Chemical Bonding at Surfaces and Interfaces

Chemical Bonding at Surfaces and Interfaces
Title Chemical Bonding at Surfaces and Interfaces PDF eBook
Author Anders Nilsson
Publisher Elsevier
Pages 533
Release 2011-08-11
Genre Science
ISBN 0080551912

Download Chemical Bonding at Surfaces and Interfaces Book in PDF, Epub and Kindle

Molecular surface science has made enormous progress in the past 30 years. The development can be characterized by a revolution in fundamental knowledge obtained from simple model systems and by an explosion in the number of experimental techniques. The last 10 years has seen an equally rapid development of quantum mechanical modeling of surface processes using Density Functional Theory (DFT). Chemical Bonding at Surfaces and Interfaces focuses on phenomena and concepts rather than on experimental or theoretical techniques. The aim is to provide the common basis for describing the interaction of atoms and molecules with surfaces and this to be used very broadly in science and technology. The book begins with an overview of structural information on surface adsorbates and discusses the structure of a number of important chemisorption systems. Chapter 2 describes in detail the chemical bond between atoms or molecules and a metal surface in the observed surface structures. A detailed description of experimental information on the dynamics of bond-formation and bond-breaking at surfaces make up Chapter 3. Followed by an in-depth analysis of aspects of heterogeneous catalysis based on the d-band model. In Chapter 5 adsorption and chemistry on the enormously important Si and Ge semiconductor surfaces are covered. In the remaining two Chapters the book moves on from solid-gas interfaces and looks at solid-liquid interface processes. In the final chapter an overview is given of the environmentally important chemical processes occurring on mineral and oxide surfaces in contact with water and electrolytes. - Gives examples of how modern theoretical DFT techniques can be used to design heterogeneous catalysts - This book suits the rapid introduction of methods and concepts from surface science into a broad range of scientific disciplines where the interaction between a solid and the surrounding gas or liquid phase is an essential component - Shows how insight into chemical bonding at surfaces can be applied to a range of scientific problems in heterogeneous catalysis, electrochemistry, environmental science and semiconductor processing - Provides both the fundamental perspective and an overview of chemical bonding in terms of structure, electronic structure and dynamics of bond rearrangements at surfaces

X-Ray Charge Densities and Chemical Bonding

X-Ray Charge Densities and Chemical Bonding
Title X-Ray Charge Densities and Chemical Bonding PDF eBook
Author Philip Coppens
Publisher International Union of Crystallography
Pages 373
Release 1997-05-08
Genre Science
ISBN 0195356942

Download X-Ray Charge Densities and Chemical Bonding Book in PDF, Epub and Kindle

This book deals with the electron density distribution in molecules and solids as obtained experimentally by X-ray diffraction. It is a comprehensive treatment of the methods involved, and the interpretation of the experimental results in terms of chemical bonding and intermolecular interactions. Inorganic and organic solids, as well as metals, are covered in the chapters dealing with specific systems. As a whole, this monograph is especially appealing because of its broad interface with numerous disciplines. Accurate X-ray diffraction intensities contain fundamental information on the charge distribution in crystals, which can be compared directly with theoretical results, and used to derive other physical properties, such as electrostatic moments, the electrostatic potential and lattice energies, which are accessible by spectroscopic and thermodynamic measurements. Consequently, the work will be of great interest to a broad range of crystallographers and physical scientists.