Electromechanical Coupling Behavior of Dielectric Elastomer Transducers

Electromechanical Coupling Behavior of Dielectric Elastomer Transducers
Title Electromechanical Coupling Behavior of Dielectric Elastomer Transducers PDF eBook
Author Jianyou Zhou
Publisher
Pages 278
Release 2015
Genre
ISBN

Download Electromechanical Coupling Behavior of Dielectric Elastomer Transducers Book in PDF, Epub and Kindle

Dielectric elastomer transducers with large deformation, high energy output, light weight and low cost have been drawing great interest from both the research and industry communities, and shown potential for versatile applications in biomimetics, dynamics, robotics and energy harvesting. However, in addition to multiple failure modes such as electrical breakdown, electromechanical instability, loss-of- tension and fatigue, the performance of dielectric elastomer transducers are also strongly influenced by the hyperelastic and viscoelastic properties of the material. Also, the interplay among these material properties and the failure modes is rather difficult to predict. Therefore, in order to provide guidelines for the optimal design of dielectric elastomer transducers, it is essential to first develop accurate and reliable models, and efficient numerical methods to investigate their performance. First, this thesis purposes a boundary- constraint method to eliminate the electromechanical instability of dielectric elastomer actuators under voltage-control loading condition and improve their actuation deformation. Second, based on the finite-deformation viscoelasticity model, the natural frequency tuning process of viscoelastic dielectric elastomer resonators is examined in this work. It is found that the tuned natural frequency is highly affected by the material viscoelasticity. Also, it is concluded that the electrical loading rate only influences the tunable frequency range and the safe operation voltage of the resonator, but not the tuned natural frequency when the applied voltage is within the safe range. Third, with the finite-deformation viscoelasticity model, the energy conversion efficiency of dielectric elastomer generators under equi-biaxial loading is also investigated in this work. Simulation results show that increasing the maximum stretch ratio and the rate of defor mation, and choosing a proper bias voltage can lead to an improvement of the energy conversion efficiency. Furthermore, the fatigue life of dielectric elastomer devices under cyclic loading is explored in this work for the first time . Simulation results have demonstrated that the energy conversion efficiency of dielectric elastomer generators is compromised by their fatigue life. To tackle the critical challenges for the development and design of dielectric elastomers transducers, this research develops theoretical models and numerical methods that are able to capture the nonlinear electromechanical coupling, the material properties, the typical failure modes and different operating conditions of dielectric elastomer transducers. With more accurate and reliable modeling methods, this work is expected to provide a comprehensive understanding on the fundamentals and technologies of dielectric elastomer transducers and trigger more innovative and optimal design of such devices.

Electromechanical Coupling Behavior of Dielectric Elastomer Composites

Electromechanical Coupling Behavior of Dielectric Elastomer Composites
Title Electromechanical Coupling Behavior of Dielectric Elastomer Composites PDF eBook
Author Ryan Steven Scurlock
Publisher
Pages 92
Release 2016
Genre
ISBN

Download Electromechanical Coupling Behavior of Dielectric Elastomer Composites Book in PDF, Epub and Kindle

Dielectric elastomers have gained substantial interest in the past few decades under research efforts aimed to improve electromechanical transducer technology. This material is often termed a “smart material” due to its intrinsic transduction properties, allowing the elastomer to deform in response to electric stimulation. High mechanical compliance, lightweight, low cost, and the ability to achieve enormous voltage induced strains make dielectric elastomers excellent candidates to serve as electromechanical transducers, both as high efficiency actuators and energy harvesters. This work is focused on increasing the transduction efficiency of dielectric elastomers, strengthening their potential effectiveness as a transducer. To enhance the electrostriction of the material, a composite concept is introduced where rigid conducting fibrous electrodes are embedded into the dielectric. A combined theoretical and numerical modeling framework is developed to analyze the electromechanical behavior of several different composite arrangements. In order to examine the large mechanical deformations of the elastomer, a finite deformation theory is required for the description of the material behavior. To describe the material free energy, a compressible Neo-Hookean model is utilized. The finite element method is used for the numerical solution technique to the boundary value problem.

Dielectric Elastomers as Electromechanical Transducers

Dielectric Elastomers as Electromechanical Transducers
Title Dielectric Elastomers as Electromechanical Transducers PDF eBook
Author Federico Carpi
Publisher Elsevier
Pages 344
Release 2011-09-06
Genre Technology & Engineering
ISBN 0080557724

Download Dielectric Elastomers as Electromechanical Transducers Book in PDF, Epub and Kindle

Dielectric Elastomers as Electromechanical Transducers provides a comprehensive and updated insight into dielectric elastomers; one of the most promising classes of polymer-based smart materials and technologies. This technology can be used in a very broad range of applications, from robotics and automation to the biomedical field. The need for improved transducer performance has resulted in considerable efforts towards the development of devices relying on materials with intrinsic transduction properties. These materials, often termed as "smart or "intelligent, include improved piezoelectrics and magnetostrictive or shape-memory materials. Emerging electromechanical transduction technologies, based on so-called ElectroActive Polymers (EAP), have gained considerable attention. EAP offer the potential for performance exceeding other smart materials, while retaining the cost and versatility inherent to polymer materials. Within the EAP family, "dielectric elastomers, are of particular interest as they show good overall performance, simplicity of structure and robustness. Dielectric elastomer transducers are rapidly emerging as high-performance "pseudo-muscular actuators, useful for different kinds of tasks. Further, in addition to actuation, dielectric elastomers have also been shown to offer unique possibilities for improved generator and sensing devices. Dielectric elastomer transduction is enabling an enormous range of new applications that were precluded to any other EAP or smart-material technology until recently. This book provides a comprehensive and updated insight into dielectric elastomer transduction, covering all its fundamental aspects. The book deals with transduction principles, basic materials properties, design of efficient device architectures, material and device modelling, along with applications. - Concise and comprehensive treatment for practitioners and academics - Guides the reader through the latest developments in electroactive-polymer-based technology - Designed for ease of use with sections on fundamentals, materials, devices, models and applications

Robotic Systems and Autonomous Platforms

Robotic Systems and Autonomous Platforms
Title Robotic Systems and Autonomous Platforms PDF eBook
Author Shawn M. Walsh
Publisher Woodhead Publishing
Pages 606
Release 2018-10-11
Genre Technology & Engineering
ISBN 0081020481

Download Robotic Systems and Autonomous Platforms Book in PDF, Epub and Kindle

Robotic Systems and Autonomous Platforms: Advances in Materials and Manufacturing showcases new materials and manufacturing methodologies for the enhancement of robotic and autonomous systems. Initial chapters explore how autonomous systems can enable new uses for materials, including innovations on different length scales, from nano, to macro and large systems. The means by which autonomous systems can enable new uses for manufacturing are also addressed, highlighting innovations in 3D additive manufacturing, printing of materials, novel synthesis of multifunctional materials, and robotic cooperation. Concluding themes deliver highly novel applications from the international academic, industrial and government sectors. This book will provide readers with a complete review of the cutting-edge advances in materials and manufacturing methodologies that could enhance the capabilities of robotic and autonomous systems. - Presents comprehensive coverage of materials and manufacturing technologies, as well as sections on related technology, such as sensing, communications, autonomy/control and actuation - Explores potential applications demonstrated by a selection of case-studies - Contains contributions from leading experts in the field

Biomedical Applications of Electroactive Polymer Actuators

Biomedical Applications of Electroactive Polymer Actuators
Title Biomedical Applications of Electroactive Polymer Actuators PDF eBook
Author Federico Carpi
Publisher John Wiley & Sons
Pages 496
Release 2009-04-13
Genre Medical
ISBN 9780470744680

Download Biomedical Applications of Electroactive Polymer Actuators Book in PDF, Epub and Kindle

Giving fundamental information on one of the most promising families of smart materials, electroactive polymers (EAP) this exciting new titles focuses on the several biomedical applications made possible by these types of materials and their related actuation technologies. Each chapter provides a description of the specific EAP material and device configuration used, material processing, device assembling and testing, along with a description of the biomedical application. Edited by well-respected academics in the field of electroactive polymers with contributions from renowned international experts, this is an excellent resource for industrial and academic research scientists, engineers, technicians and graduate students working with polymer actuators or in the fields of polymer science.

Energy Harvesting

Energy Harvesting
Title Energy Harvesting PDF eBook
Author Reccab Manyala
Publisher BoD – Books on Demand
Pages 94
Release 2018-06-27
Genre Technology & Engineering
ISBN 1789233925

Download Energy Harvesting Book in PDF, Epub and Kindle

This book contains chapters that discuss numerous methods and techniques in energy harvesting. Both theoretical and experimental results are presented from investigations that were carried out in the various chapters. Well-grounding methods and techniques presented in the new areas provide a good head start not only to those with interest in energy harvesting but also to experienced researchers who may want to look at energy harvesting from different angles. The concepts of energy harvesting are well articulated in the introduction of each chapter. It is my sincere hope that the readers of this book will find it a useful fountain of knowledge in energy harvesting.

Electroactive Polymers for Robotic Applications

Electroactive Polymers for Robotic Applications
Title Electroactive Polymers for Robotic Applications PDF eBook
Author Kwang J. Kim
Publisher Springer Science & Business Media
Pages 288
Release 2007-01-17
Genre Technology & Engineering
ISBN 1846283728

Download Electroactive Polymers for Robotic Applications Book in PDF, Epub and Kindle

This book covers the fundamental properties, modeling, and demonstration of Electroactive polymers in robotic applications. It particularly details artificial muscles and sensors. In addition, the book discusses the properties and uses in robotics applications of ionic polymer–metal composite actuators and dielectric elastomers.