Electromagnetic Wave Propagation for Industry and Biomedical Applications
Title | Electromagnetic Wave Propagation for Industry and Biomedical Applications PDF eBook |
Author | Lulu Wang |
Publisher | BoD – Books on Demand |
Pages | 198 |
Release | 2022-03-16 |
Genre | Science |
ISBN | 1839685816 |
This book highlights original research and high-quality technical briefs on electromagnetic wave propagation, radiation, and scattering, and their applications in industry and biomedical engineering. It also presents recent research achievements in the theoretical, computational, and experimental aspects of electromagnetic wave propagation, radiation, and scattering. The book is divided into three sections. Section 1 consists of chapters with general mathematical methods and approaches to the forward and inverse problems of wave propagation. Section 2 presents the problems of wave propagation in superconducting materials and porous media. Finally, Section 3 discusses various industry and biomedical applications of electromagnetic wave propagation, radiation, and scattering.
Electromagnetic Wave Propagation, Radiation, and Scattering
Title | Electromagnetic Wave Propagation, Radiation, and Scattering PDF eBook |
Author | Akira Ishimaru |
Publisher | John Wiley & Sons |
Pages | 1045 |
Release | 2017-08-09 |
Genre | Science |
ISBN | 1119079535 |
One of the most methodical treatments of electromagnetic wave propagation, radiation, and scattering—including new applications and ideas Presented in two parts, this book takes an analytical approach on the subject and emphasizes new ideas and applications used today. Part one covers fundamentals of electromagnetic wave propagation, radiation, and scattering. It provides ample end-of-chapter problems and offers a 90-page solution manual to help readers check and comprehend their work. The second part of the book explores up-to-date applications of electromagnetic waves—including radiometry, geophysical remote sensing and imaging, and biomedical and signal processing applications. Written by a world renowned authority in the field of electromagnetic research, this new edition of Electromagnetic Wave Propagation, Radiation, and Scattering: From Fundamentals to Applications presents detailed applications with useful appendices, including mathematical formulas, Airy function, Abel’s equation, Hilbert transform, and Riemann surfaces. The book also features newly revised material that focuses on the following topics: Statistical wave theories—which have been extensively applied to topics such as geophysical remote sensing, bio-electromagnetics, bio-optics, and bio-ultrasound imaging Integration of several distinct yet related disciplines, such as statistical wave theories, communications, signal processing, and time reversal imaging New phenomena of multiple scattering, such as coherent scattering and memory effects Multiphysics applications that combine theories for different physical phenomena, such as seismic coda waves, stochastic wave theory, heat diffusion, and temperature rise in biological and other media Metamaterials and solitons in optical fibers, nonlinear phenomena, and porous media Primarily a textbook for graduate courses in electrical engineering, Electromagnetic Wave Propagation, Radiation, and Scattering is also ideal for graduate students in bioengineering, geophysics, ocean engineering, and geophysical remote sensing. The book is also a useful reference for engineers and scientists working in fields such as geophysical remote sensing, bio–medical engineering in optics and ultrasound, and new materials and integration with signal processing.
Applications of Electromagnetic Waves
Title | Applications of Electromagnetic Waves PDF eBook |
Author | Reza K. Amineh |
Publisher | MDPI |
Pages | 242 |
Release | 2021-01-20 |
Genre | Technology & Engineering |
ISBN | 303936300X |
Electromagnetic (EM) waves carry energy through propagation in space. This radiation associates with entangled electric and magnetic fields which must exist simultaneously. Although all EM waves travel at the speed of light in vacuum, they cover a wide range of frequencies called the EM spectrum. The various portions of the EM spectrum are referred to by various names based on their different attributes in the emission, transmission, and absorption of the corresponding waves and also based on their different practical applications. There are no certain boundaries separating these various portions, and the ranges tend to overlap. Overall, the EM spectrum, from the lowest to the highest frequency (longest to shortest wavelength) contains the following waves: radio frequency (RF), microwaves, millimeter waves, terahertz, infrared, visible light, ultraviolet, X-rays, and gamma rays. This Special Issue consists of sixteen papers covering a broad range of topics related to the applications of EM waves, from the design of filters and antennas for wireless communications to biomedical imaging and sensing and beyond.
Electromagnetic and Acoustic Waves in Bioengineering Applications
Title | Electromagnetic and Acoustic Waves in Bioengineering Applications PDF eBook |
Author | Ivo Čáp |
Publisher | BoD – Books on Demand |
Pages | 226 |
Release | 2021-12-24 |
Genre | Science |
ISBN | 1789853478 |
The book deals with the analysis of oscillations, mechanical and electromagnetic waves, and their use in medicine. Each chapter contains the theoretical basis and the use of relevant phenomena in medical practice. Description of oscillations is important for understanding waves and the nature of magnetic resonance. A chapter on mechanical waves describes the origin and properties of sound, infrasound and ultrasound, their medical applications, and perception of sound by human hearing. A chapter on electromagnetic waves examines their origin, properties, and applications in therapy and diagnostics. Subsequent chapters describe how interference and diffraction lead to applications like optical imaging, holography, virtual reality, and perception of light by human vision. Also addressed is how quantum properties of radiation helped develop the laser scalpel, fluorescence microscopy, spectroscopy, X-rays, and gamma radiation.
Planar Metamaterial Based Microwave Sensor Arrays for Biomedical Analysis and Treatment
Title | Planar Metamaterial Based Microwave Sensor Arrays for Biomedical Analysis and Treatment PDF eBook |
Author | Margarita Puentes Vargas |
Publisher | Springer Science & Business Media |
Pages | 165 |
Release | 2014-03-29 |
Genre | Technology & Engineering |
ISBN | 3319060414 |
This book presents an innovative concept for the realization of sensors based on a planar metamaterial microwave array and shows their application in biomedical analysis and treatment. The sensors are able to transduce the dielectric properties of materials in their direct vicinity into an electric signal. The specific array organization permits a simultaneous analysis of several materials using a single readout signal or a relative characterization of one material where information about its spatial distribution can be extracted. Two applications of the designed sensors are described here: the first is a cytological screening using micro fluidic technology, which shows that the sensors may be integrated into lab-on-chip technologies; the second application regards the use of the sensor in both the analysis and treatment of organic tissues. The developed sensor is able not only to screen the tissues for abnormalities, but also, by changing the applied signals, to perform thermal ablation and treat the abnormalities in a highly focused way. Thus, the research described in this book represents a considerable advancement in the field of biomedical microwave sensing.
Medical and Biomedical Applications of Shock Waves
Title | Medical and Biomedical Applications of Shock Waves PDF eBook |
Author | Achim M. Loske |
Publisher | Springer |
Pages | 396 |
Release | 2016-12-01 |
Genre | Science |
ISBN | 3319475703 |
This book provides current, comprehensive, and clear explanations of the physics behind medical and biomedical applications of shock waves. Extracorporeal shock wave lithotripsy is one of the greatest medical advances of our time, and its techniques and clinical devices are continuously evolving. Further research continues to improve the understanding of calculi fragmentation and tissue-damaging mechanisms. Shock waves are also used in orthopedics and traumatology. Possible applications in oncology, cardiology, dentistry, gene therapy, cell transfection, transformation of fungi and bacteria, as well as the inactivation of microorganisms are promising approaches for clinical treatment, industrial applications and research. Medical and Biomedical Applications of Shock Waves is useful as a guide for students, technicians and researchers working in universities and laboratories. Chemists, biologists, physicians and veterinarians, involved in research or clinical practice will find useful advice, but also engineers and physicists may benefit from the overview of current research endeavors and future directions. Furthermore, it may also serve to direct manufacturers towards the design of more efficient and safer clinical, industrial and laboratory equipment.
Microwave, Radar & RF Engineering
Title | Microwave, Radar & RF Engineering PDF eBook |
Author | Prakash Kumar Chaturvedi |
Publisher | Springer |
Pages | 474 |
Release | 2018-06-20 |
Genre | Technology & Engineering |
ISBN | 981107965X |
This is a textbook for upper undergraduate and graduate courses on microwave engineering, written in a student-friendly manner with many diagrams and illustrations. It works towards developing a foundation for further study and research in the field. The book begins with a brief history of microwaves and introduction to core concepts of EM waves and wave guides. It covers equipment and concepts involved in the study and measurement of microwaves. The book also discuses microwave propagation in space, microwave antennae, and all aspects of RADAR. The book provides core pedagogy with chapter objectives, summaries, solved examples, and end-of-chapter exercises. The book also includes a bonus chapter which serves as a lab manual with 15 simple experiments detailed with proper circuits, precautions, sample readings, and quiz/viva questions for each experiment. This book will be useful to instructors and students alike.